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Abstract
In recent years, transformer-based models like BERT and ChatGPT/GPT-3/4 have shown remarkable performance in various 
natural language understanding tasks. However, it’s crucial to note that while these models exhibit impressive surface-level 
language understanding, they may not truly understand the intent and meaning beyond the superficial sentences. This paper 
is a survey of studies of the popular Large Language Models (LLMs) from various research and industry papers and review the 
abilities in term of comprehending language understanding like what human have, revealing key challenges and limitations 
associated with popular LLMs including BERTology and GPT alike models.
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1. Introduction
In this paper, I conducted extensive research and strive to 
understand the capabilities and boundaries of popular Large 
Language Models (LLM) - BERT, GPT and its sibling variants. 
The study starts with BERT and its variants (mBERT and 
RoBERT etc) architecture which is called BERTology. It 
reveals the knowledge BERT may have: Syntactic Knowledge, 
Semantic Knowledge and World Knowledge, Commonsense 
Knowledge, and Reasoning. In order to measure the extent to 
which the semantic understanding and reasoning capability 
of the models have reached, we also explore to study 
the definition of meaning. While NLP gains increasingly 
significant public exposure nowadays, it is crucial to make 
it clear on the distinction between the linguistic word form 
and semantic meaning. Next, we also study the reasoning 
capability of GPT3 and how to improve the reasoning 
capability by Chain-of-Thought (CoT) prompting which 
involves zero-shot and few-shot reasoners as prompting 
techniques. After all, we summarize the latest studies with 
existing capabilities and limitations that these popular LLMs 
have gained today.

2. Background
This is a basically literature review and expected to answer 
a question: To what extend do LLMs understand the natural 
language? The focus of the study will be
1 How LLM understand natural language, whether they truly 
understand the intent and meaning beyond the superficial 
sentences and the knowledge and capabilities of LLM today?
2 What are the challenges and limitations towards truly 
understanding natural language today?
There are many LLMs today and they are growing every day. 

I don’t try to enumerate all the models, instead just focus on 
these popular and well-known models based on Transformer: 
BERT, GPT and its siblings. Also, understanding natural 
language with Large Language Models ( LLMs ) is a broad 
subject. After consulting the papers, it became apparent that 
delving deeper into the topic and surpassing the minimum 
of 4-5 papers is necessary to thoroughly investigate and 
address the topic.

2.1 BERTology and GPT Overview
BERT BERT is a multi-layer of transformer encoder that 
comprise multiple self-attention ‘head’. It consists of two 
stages: pre-training and fine-tuning. Pre-training uses 
Masked Language Modeling (MLM) and Next Sequence 
Prediction (NSP). It is based on Bidirectional Encoder 
Representations from Transformers, which alleviates the 
unidirectional constraints by MLM pre-training objective. 
mBERT (Multilingual BERT) is a variant of BERT pre-
trained to support multilingual natural language processing 
tasks. RoBERT (Robustly optimized BERT) introduced a 
modification of BERT by removing Next Sentence Prediction. 
These variants share the fundamental architecture with 
language understanding capabilities.

GPT-3 and GPT-4 OpenAI GPT-3 is an autoregressive language 
model that employs a Transformer model. Be aware GPT-3 is 
not a single model but a family of models that has different 
numbers of trainable hyperparameters and fine-tuning 
settings. Unlike BERT which is open sourced, GPT-3 is closed 
and black box. As the paper is being written, GPT-4 Turb has 
just been released which is claimed to be another significant 
leap on NLP. This review is just based on known information 
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and studies collected from public papers and experiments. 
We start reviewing BERT and its variants(a.k.a BERTology) 
as they are both based on the Transformer model and iterate 
to newer and larger models of GPT-3. We just focus on text 
processing only.

3. Knowledge and Reasoning Capabilities
3.1 Syntactic Knowledge
Syntactic representation from BERTology The paper A 
Primer in BERTology showed that syntactic information 
can be recovered from BERT token representation, even 
though it seems that syntactic structure is not directly 
encoded in self-attention weights [1]. Because BERT is 
based on a bidirectional encoder it is trained on both left-
to-right and right-to-left sequences. Studies showed BERT 
representations are hierarchical rather than linear, that is, 
BERT model is akin to a syntactic tree structure in addition 
to word order information. This provides evidence that BERT 
“naturally” learns some syntactic information. However, 
as the study shows BERT couldn’t “understand” negation 
and is insensitive to malformed input. It claimed BERT’s 
predictions were not altered even with shuffled word order. 
This surprised me because the word order information had 
been encoded in the embed input indeed, and it must be 
reflected in the training output. The potential explanation is 
this could be due to training weights. Per the paper’s analysis, 
this could mean that either BERT’s syntactic knowledge is 
incomplete, or it does not need to rely on it for solving its 
tasks. There is no concrete answer yet but the latter seems 
more likely per report [2].

Attention Can Reflect Syntactic Structure The attention 
mechanism is an innovative part of Transformer architecture 
and essentially is a mapping in sequence-to-sequence 
between a query and a set of key-value pairs to an output.

About syntactic structure, studied that the Transformer 
model with multiple head attentions mechanism allows it to 
jointly attend to information from different representations 
(features) [3]. It has been observed that individual 
dependency relations were often tracked by specialized 
heads. In this paper, experiments were conducted with a tree 
decoding test to show that the attention mechanism was 
learning to represent the structural objective of the parser. 
It’s surprising that the transformer parameters, K and Q, 
were only modestly capable of resembling the dependency 
structure. What is more important is the Value (V) parameters, 
which play the most faithful representation of the linguistic 
structure via attention. The experiments in this paper 
focused on a linguistic structure that the attention-based 
model can learn and no test tasks were designed to explore 
semantic-orientation classification. Actually, this is an un-
answered question which sets of transformer parameters 
are suited for learning such semantic information, or not at 
all? This leads us to study the next paper and the extent to 
which the transformer-based model, including BERTology, 
understands the natural language in terms of semantic 

aspects.

3.2 Semantic Knowledge
BERT’s semantic knowledge The paper claims there is 
evidence that BERT has some knowledge of semantic roles. Eg. 
“to tip a chef” is better than “to tip a robin”, but worse than “to 
tip a waiter” [1]. But BERT struggles with the representation 
of numbers because of wordpiece tokenization where 
similar values can be divided up into substantially different 
word chunks. BERT encodes information about entity types, 
relations, and semantic roles since this information can be 
detected with probing classifiers. However, study shows 
BERT struggles with representations of numbers. Floating 
point numbers, i.e. “2.09” can be divided into two chunks of 
words by the dot, “2” and “09”. This breaks up the semantic 
meaning. Although BERT is “surprisingly” brittle to name 
entity replacements, it still did not absorb all the relevant 
entity information during pretraining. So the model couldn’t 
build a generic idea of named entities. So there is no strong 
or complete evidence for BERT to show the full mastery of 
semantic knowledge.

The explanation behind this (in this study) is that BERT’s 
self-attention heads do not directly encode any non-trivial 
linguistic information, basic syntactic information appears 
earlier in the network and high-level semantic features 
appear at the higher layers where training in higher layers 
is very expensive in BERT. Given the fact that BERT is 
computationally expensive, it is challenging to train high-
level semantic understanding capability. GPT-3’s semantic 
knowledge GPT-3 seems doing a better job with linguistic 
knowledge to identify certain semantic information in most 
cases, but still fails when there are some types of disturbance 
happening in the sentence. Per existing studies and 
experiments, GPT-3 doesn’t possess Semantic Knowledge 
in the same way humans do, but it can generate responses 
that appear to understand the “meaning” of the input by 
recognizing patterns and associations in the data it was 
trained on [4].

3.3 World Knowledge or Commonsense Knowledge
The study shows BERT is lack of World knowledge [5]. 
It struggles with pragmatic inference, role-based event 
knowledge, and abstract attributes of objects that are likely 
to be assumed rather than mentioned. To answer questions 
like “Does the cake go in the oven?” which looks common 
sense to humans, BERT does have difficulty answering 
because of a lack of strong Contextualization.

Commonsense knowledge, an alias of world knowledge, 
requires context info to learn. In the paper “Cracking 
the Contextual Commonsense Code: Understanding 
Commonsense Reasoning Aptitude of Deep Contextual 
Representations” a method was developed through attribute 
classification in the semantic datasets and compared the 
contextual model to traditional word embedding [5]. The 
result outperforms word type embedding but still lacks some 
commonsense attributes - visual and perceptual properties. 
To mitigate this deficiency, a knowledge graph embedding 
was added in BERT features utilizing CSLB, a semantic norm 
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Attention(Q,K,V)= softmax V 

About syntactic structure, Ravishankar et al. (2021) studied that the Transformer model with 
multiple head attentions mechanism allows it to jointly attend to information from different 
representations(features). It has been observed that individual dependency relations were often 
tracked by specialized heads. In this paper, experiments were conducted with a tree decoding 
test to show that the attention mechanism was learning to represent the structural objective of 
the parser. It’s surprising that the transformer parameters, K and Q, were only modestly capable 
of resembling the dependency structure. What is more important is the Value (V) parameters, 
which play the most faithful representation of the linguistic structure via attention. The 
experiments in this paper focused on a linguistic structure that the attention-based model can 
learn and no test tasks were designed to explore semantic-orientation classification. Actually, 
this is an un-answered question which sets of transformer parameters are suited for learning 
such semantic information, or not at all? This leads us to study the next paper and the extent to 
which the transformer-based model, including BERTology, understands the natural language in 
terms of semantic aspects. 

4.2 Semantic Knowledge 

BERT’s semantic knowledge The paper (Rogers et al., 2020) claims there is evidence that BERT 
has some knowledge of semantic roles. Eg. “to tip a chef” is better than “to tip a robin”, but 
worse than “to tip a waiter”. But BERT struggles with the representation of numbers because of 
wordpiece tokenization where similar values can be divided up into substantially different word 
chunks. BERT encodes information about entity types, relations, and semantic roles since this 
information can be detected with probing classifiers. However, study shows BERT struggles with 
representations of numbers. Floating point numbers, i.e. “2.09” can be divided into two chunks 
of words by the dot, “2” and “09”. This breaks up the semantic meaning. Although BERT is 
“surprisingly” brittle to name entity replacements, it still did not absorb all the relevant entity 
information during pretraining. So the model couldn’t build a generic idea of named entities. So 
there is no strong or complete evidence for BERT to show the full mastery of semantic 
knowledge. 

The explanation behind this (in this study) is that BERT’s self-attention heads do not directly 
encode any non-trivial linguistic information, basic syntactic information appears earlier in the 
network and high-level semantic features appear at the higher layers where training in higher 
layers is very expensive in BERT. Given the fact that BERT is computationally expensive, it is 
challenging to train high-level semantic understanding capability. 

GPT-3’s semantic knowledge GPT-3 seems doing a better job with linguistic knowledge to 
identify certain semantic information in most cases, but still fails when there are some types of 
disturbance happening in the sentence. Per existing studies and experiments (Zhang et al., 
2022), GPT-3 doesn’t possess Semantic Knowledge in the same way humans do, but it can 
generate responses that appear to understand the “meaning” of the input by recognizing 
patterns and associations in the data it was trained on. 
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dataset [1]. Knowledge Graphs can help encode information 
that extends beyond BERT’s embedding features. A classifier 
was also introduced to classify if an attribute applies to 
a candidate object, word, or sentence. It’s found the F1 
attribute score is much stronger - the median F1 score is 
nearly double that of GloVe baselines [1]. This means BERT 
encodes commonsense traits. However, this is not perfect. 
Some traits exhibit better than others. Specifically, physical 
traits such as “is made of wood” and “has a top” perform way 

better than those abstract traits such as “is creepy and is 
strong”.

To answer the question of whether to use a camera flash, it 
would be thus related to the traits “does have flash”, “is dark”, 
and “is light”, the model needs fine-tuning on additional data 
which is manually selected related to attributes that BERT is 
deficient in. The results (Table 1) show with
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pragmatic inference, role-based event knowledge, and abstract attributes of objects that are 
likely to be assumed rather than mentioned. To answer questions like “Does the cake go in the 
oven?” which looks common sense to humans, BERT does have difficulty answering because of a 
lack of strong 
Contextualization. 

Commonsense knowledge, an alias of world knowledge, requires context info to learn. In the 
paper “Cracking the Contextual Commonsense Code: Understanding Commonsense Reasoning 
Aptitude of Deep Contextual Representations” (Da and Kasai, 2019) a method was developed 
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commonsense attributes - visual and perceptual properties. To mitigate this deficiency, a 
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embedding features. A classifier was also introduced to classify if an attribute applies to a 
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median F1 score is nearly double that of GloVe 2

To answer the question of whether to use a camera flash, it would be thus related to the 
traits “does have flash”, “is dark”, and “is light”, the model needs fine-tuning on additional data 
which is manually selected related to attributes that BERT is deficient in. The results (Table 1) 
show with 

 baselines. This means BERT encodes 
commonsense traits. However, this is not perfect. Some traits exhibit better than others. 
Specifically, physical traits such as “is made of wood” and “has a top” perform way better than 
those abstract traits such as “is creepy and is strong”. 

System Accuracy 
Human(Golden) 97.4 
Random Baseline 48.9 
BERT(LARGE) 82.3 
with ConceptNet 83.1 
with WebChild 82.7 
with ATOMIC 82.5 
with all KB 83.3 
with all KB + RACE(selected) 85.5 

Table 1: Test set results for knowledge base embeddings on MCScript 2.0 (Da and Kasai, 2019) 

ConceptNet: An open, multilingual knowledge graph ( https://conceptnet.io ) 

WebChild: Fine-grained commonsense knowledge distillation.Tandon et al. (2017) 

ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning Sap et al. (2018) 

RACE: Large-scale reading comprehension dataset from examinations Lai et al. (2017) 
                                                            
1 CSLB, a semantic norm dataset collected by the Cambridge Centre for Speech, Language, and the Brain.  
2 GloVe: Global Vectors for Word Representation: https://nlp.stanford.edu/projects/glove/  

Table 1: Test Set Results for Knowledge base Embedding’s on MCScript 2.0 [5]

ConceptNet: An open, multilingual knowledge graph ( 
https://conceptnet.io )
WebChild: Fine-grained commonsense knowledge 
distillation [6].
ATOMIC: An Atlas of Machine Commonsense for If-Then 
Reasoning [7].
RACE: Large-scale reading comprehension dataset from 
examinations [8].
MCSScript [9].

Explicit knowledge embeddings that each knowledge base 
improves accuracy, with ConceptNet giving the largest 
performance boost. ATOMIC gives the smallest boost, likely 
because the TOMIC edges involve longer phrases, which 
means fewer matches and the overlap between ATOMIC 
text and the text present in the task is not as large as 
either ConceptNet or WebChild [7]. As a result can tell that 
combining the knowledge base embeddings and the implicit 
RACE fine-tuning yields the highest accuracy. so fine-tuning 
is very critical in contextual knowledge learning.

BERTology’s capability we have learned so far So given 
varied studies, BERT does possess a limited amount of 
syntactic, semantic, and world knowledge although some 
studies show some. It looks like it has built-in knowledge 
of syntactic structure due to its nature of encoding and 
embedding, but lacks strong semantic and world knowledge 
although some hypes claim to have. Further, BERT has limited 
reasoning abilities and its performance is heavily attributed 
to pattern recognition. The awkward situation is there is 
no single probing method that can reliably tell what extent 
the knowledge of the model possesses. A given method may 
favor one over another. This actually leads us to think about 
the definition of the “meaning” of language since the term 
“meaning” is so rich and multifaceted.

3.4 What is Meaning vs form
In this paper, defines what is meaning at first [10]. This is 
important to quantify what extent these LLMs understand 
natural language. It claims in varied terminologies, 
reports, and publications of LLMs there have been many 
misunderstandings of the relationship between linguistic 
form and meaning. Many claims in both academic and popular 
publications that claimed to “understand” natural language 
are ambiguous and misleading, such as “BERT is a system ... to 
better understand how human beings communicate...” “Here 
are some examples that ...demonstrate BERT’s ability to 
understand the intent behind your search.” It argues that “the 
language modeling task because it only uses form as training 
data, cannot in principle lead to learning of meaning”. The 
form is just the observable realization of language, like the 
mark of page, pixels, or bytes of text binary. Linguistic form is 
the syntax representation of word sequence, like POS. Then 
what is the difference between linguistic form and meaning? 
This paper gave its answer: meaning is the relation between 
linguistic form and communicative intent.
M = E ×I

Which contains pairs (e, i) of natural language expression 
e and the communicative intents i they can evoke. 
Communicative intents are about something out of language. 
For example, when a teacher says “It is cold in the room”, 
the intent behind the utterance is that “we should close the 
window” or “increase the heater temperature to make the 
room warmer.” It claims that LLMs trained purely on form 
will not learn meaning because there is no sufficient signal to 
learn the relationship between the form and non-linguistic 
intent of human language users.

Octopus test Why meaning can’t be learned from linguistic 
form alone? Because it lacks the ability to connect its 
utterances to the world. The Octopus test described in 
is designed to run experiments based on two isolated 
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Octopus, A, and B on two stranded islands, they can only 
communicate by a wire in the sea [10]. There is the third 
one O who can learn the communication between A and B. 
O is very good at detecting statistical patterns and learning 
and can predict with great accuracy how B will respond to 
each of A’s utterances. However, this is working well until 
someday a new situation beyond the existing utterances 
happen. Dealing with new situations or new tasks requires 
the ability to map accurately between words and realworld 
entities as well as reasoning and creative thinking, which 
cannot be learned from statistics summary. When a run into 
an emergency on confronted with a bear never seen before 
and ask for help from B, the middle Octopus O who never had 
such experience has no idea how to deal with and respond.

Hype One hype for believing LM might be learning meaning 
is the claim that human children can acquire language just by 
listening to it. This is not true based on some studies. Actually, 
kids won’t pick up a language from passive exposure such 
as TV or radio. The critical part of language learning is not 
just plain attention but also joint attention where interaction 
is important to boost the meaning of understanding. So the 
conclusion is that learning a linguistic system is like human 
learning. Communication relies on joint attention and 
intersubjectivity: the ability to be aware of what another 
human is attending to and guess/interact with what they 
intend to communicate. It cannot be learned by purely passive 
“learning”, the key point is “interaction” between learner and 
teacher. Does BERTopogy learn meaning In conclusion of 
this paper, BERTopogy doesn’t learn “meaning”, it just learns 
some reflection of meaning in linguistic form.
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Octopus test Why meaning can’t be learned from linguistic form alone? Because it lacks the 
ability to connect its utterances to the world. The Octopus test described in (Bender and Koller, 
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the communication between A and B. O is very good at detecting statistical patterns and 
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experience has no idea how to deal with and respond. 

Hype One hype for believing LM might be learning meaning is the claim that human children can 
acquire language just by listening to it. This is not true based on some studies. Actually, kids 
won’t pick up a language from passive exposure such as TV or radio. The critical part of language 
learning is not just plain attention but also joint attention where interaction is important to 
boost the meaning of understanding. So the conclusion is that learning a linguistic system is like 
human learning. Communication relies on joint attention and intersubjectivity: the ability to be 
aware of what another human is attending to and guess/interact with what they intend to 
communicate. It cannot be learned by purely passive “learning”, the key point is “interaction” 
between learner and teacher. 

Does BERTopogy learn meaning In conclusion of this paper, BERTopogy doesn’t learn “meaning”, it 
just learns some reflection of meaning in linguistic form. 

Category Poor scoring attributes(fit score <1.0) Perfect scoring attributes (fit score = 
1.0) 

Visual is triangular, is long has a back, has a top 
Perceptual is wet,is rough, creepy and strong does drive, does bend, live in river 
Taxonomic is a home, is a garden tool is cat, is a body part 

Table 2: Fine-grained comparison across categories between attributes by BERT representation 

Per the above fine-grained comparison (Table 2) between attributes using BERT 
representations, overall BERT is strong enough to fit many features that would easily be 
represented in text such as “does bend”, “does drive”, or “does live in river”, but still seems to 
have difficulty to fit those that most pertain to abstract common-sense, such as “is hardy” and 
“has a strong smell”. So this paper (Da and Kasai, 2019) tells BERT shows a strong ability to 
encode various commonsense features in its embedding space, particularly those that are easily 
represented in text while facing challenges with abstract commonsense attributes. 

4.5 Understanding source code 

In the paper ”The Larger they are, the Harder they Fail: Language Models do not Recognize 
Identifier Swaps in Python” Miceli Barone et al. (2023) studies have been conducted to probe 

Table 2: Fine-Grained Comparison Across Categories between Attributes by BERT Representation

Per the above fine-grained comparison (Table 2) between 
attributes using BERT representations, overall BERT is 
strong enough to fit many features that would easily be 
represented in text such as “does bend”, “does drive”, or “does 
live in river”, but still seems to have difficulty to fit those that 
most pertain to abstract common-sense, such as “is hardy” 
and “has a strong smell”. So this paper tells BERT shows a 
strong ability to encode various commonsense features 
in its embedding space, particularly those that are easily 
represented in text while facing challenges with abstract 
commonsense attributes [5].

3.5 Understanding Source Code
In the paper ”The Larger they are, the Harder they Fail: 
Language Models do not Recognize Identifier Swaps 
in Python” studies have been conducted to probe the 

“memorization” hypothesis via counterfactual tasks [11]. 
The idea is to take a reasoning task that an LLM knows 
well and create a reversed or fake version of that task that 
requires abstract reasoning ability but is very less likely to 
show in the training dataset. As an example, we exchanged 
the Python built-in functions: len and print. And we ask LLM 
to generate a function to print out the length (Figure 1). 
The LLM gave the wrong answer in BERT and GPT-3 first-
generation. (GPT-4 may be doing better, but is believed to 
have no fundamental change because of fundamentally the 
same model architecture.) All tested models always prefer 
the incorrect the output resulting in zero classification 
accuracy, the log-likelihood of the incorrect output is always 
significantly higher than the uniform baseline, but it varies 
with the model.

6 

the “memorization” hypothesis via counterfactual tasks. The idea is to take a reasoning task that 
an LLM knows well and create a reversed or fake version of that task that requires abstract 
reasoning ability but is very less likely to show in the training dataset. As an example, we 
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Figure 1: Given a Python prompt (on top) which swaps of two builtin functions, large language 
models prefer the incorrect but statistically common continuation (right) to the correct but 
unusual one (left) (from Miceli Barone et al. (2023)) 

4.6 Reasoning Capability 

Few-shot reasoner While in-context learning with LLMs provides some degree of capacity for 
deep understanding and reasoning, there is always some limitation and LLMs are not very good 
at reasoning. However recent studies and experiments have shown the ability for reasoning can 
be substantially increased by making them produce step-by-step reasoning by few-shot 
prompting. Notably, a recent technology so-called chain of thought (CoT) (Wu et al., 2023) 
prompting for eliciting complex multi-step reasoning through step-by-step answer examples 
achieved significant performance boosts in multi-step arithmetic and logical reasoning. The 
paper (“Few-shot learning”) studies “Chain of thoughts” (CoT) prompting can attribute LLM to 
semantic and reasoning learning capability and empower LLMs to perform complex reasoning 
over text. As shown in Figure 2, in the experiments of web tables with CoT prompting (Wu et al., 
2023), GPT-3 with CoT prompting was doing a very good job in reasoning and also provided high-
quality explanations to justify their decision-making. As shown in the GPT-3 experiments using 
various Table-based datasets (Davincitext-002), GPT-3 outperforms T5 and pipeline models, it is 
even closed human thought. By the “few-shot reasoning” Chen (2023), we as humans provide 
the model with several exemplars of reasoning chains, which guide LLM toward the right track, 
so LLM can learn to follow the template to solve difficult unseen tasks. This is more like teaching 
a kid to solve a complex problem when he/she is stuck and the teacher just gives the kid some 
hint and the kid figures out with some clue. A real-life example would be, let’s ask an 8-year-old 

Figure 1: Given a Python Prompt (on top) which Swaps of two Built-in Functions, Large Language Models Prefer the 
Incorrect but Statistically Common Continuation (right) to the Correct but unusual one (left) [11]

3.6 Reasoning Capability
Few-shot reasoner While in-context learning with LLMs 
provides some degree of capacity for deep understanding 
and reasoning, there is always some limitation and LLMs 
are not very good at reasoning. However recent studies 

and experiments have shown the ability for reasoning can 
be substantially increased by making them produce step-
by-step reasoning by few-shot prompting. Notably, a recent 
technology so-called chain of thought (CoT) prompting for 
eliciting complex multi-step reasoning through step-by-
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step answer examples achieved significant performance 
boosts in multi-step arithmetic and logical reasoning 
[12]. The paper (“Few-shot learning”) studies “Chain of 
thoughts” (CoT) prompting can attribute LLM to semantic 
and reasoning learning capability and empower LLMs to 
perform complex reasoning over text. As shown in Figure 2, 
in the experiments of web tables with CoT prompting, GPT-3 
with CoT prompting was doing a very good job in reasoning 
and also provided high-quality explanations to justify their 
decision-making [12]. As shown in the GPT-3 experiments 
using various Table-based datasets (Davincitext-002), GPT-3 
outperforms T5 and pipeline models, it is even closed human 
thought. By the “few-shot reasoning”, we as humans provide 
the model with several exemplars of reasoning chains, which 
guide LLM toward the right track, so LLM can learn to follow 
the template to solve difficult unseen tasks [13].

This is more like teaching a kid to solve a complex problem 
when he/she is stuck and the teacher just gives the kid some 

hint and the kid figures out with some clue. A real-life example 
would be, let’s ask an 8-year-old kid what the next number 
of the sequence 1,1,2,3,5,8... The kid may be stuck and have 
no idea. Once the teacher gave some hint, “Hey, can you find 
some pattern of the sum of each adjacent number pair?”. 
Then the kid would suddenly realize this is just a Fibonacci 
sequence and the next number must be 13=5+8. CoT is the 
same thinking process with step-by-step guidance. A few-
shot reasoner typically refers to a type of learning to perform 
reasoning tasks with only a few examples or shots of data. 
In GPT-3, few-shot reasoning involves providing the model 
with a prompt or a few examples of the desired behavior, and 
the model then generalizes from those examples to perform 
tasks or answer questions. In the paper the LLM is fed with 
several promptings to build more context as instructed so 
the LLM can iterate to answer long and complex questions 
[13]. The experiments were run in Table format of questions, 
which is a kind of semi-structured dataset but still needs 
context reasoning
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Another paper “Large Language Models are zero-shot reasoners” (Kojima et al., 2023) shows zero-
shot-CoT prompt examples that demonstrate good reasoning capability. Zero-shot reasoning refers to 
the ability of LLMs to perform multi-step reasoning tasks on unseen domains without any hand-crafted 
examples. It enables them to generalize knowledge from their training data and apply it to new, 
unseen situations. The idea behind this is to trigger LLMs by simply adding a “Let’s think step by step” 
prompt to generate a reasoning path in the LLM’s background processing that decomposes a complex 
problem into two or more “simpler” and breaks it down into sub-problems. This looks very simple, and 
actually, I think the key point behind this is we teach the model to explore a reasoning path that 
decomposes the complex reasoning into multiple simpler steps. 

This style of “Chain of thought prompting” demonstrated good performance in arithmetic and 
logical reasoning. 

5 Limitation and Generalization 

Even with zero-shot and few-shot reasoning, which are really prompting techniques, to help to 
unleash the potentials of LLM including GPT-3, it is still a question what is the boundary and limit 
of LLM in reasoning. The paper (Faith and Fate Dziri et al. (2023)) was trying to answer this 
question. It measured the limitation of transformers in compositional tasks with 3 
representative compositional tasks: long-form multiplication, logic grid puzzle, and a classic 
dynamic programming problem. These experiments suggest that if an output element heavily 
relies on a single or small set of input features, transformers are likely to recognize such 
correlation during training and directly map these input features to predicate the output 
element in testing without going through rigorous multi-hop reasoning. The paper hypothesizes 
that beyond simple memorization, transformers largely rely on pattern matching for solving 
these tasks. This is contradictive to the prior paper claiming “that our results cannot be 
explained solely by direct memorization.”. This poses an open question of how the LLM 
reasoning works. The difference in experiment observations may come from varied datasets or 
task domain settings. The result heavily relies on the dataset size and may scale up and down as 
the dataset scales. LLM reasoning exhibits unpredictable randomness and cannot generalize to 
large or varied categories of datasets. How to evaluate the quality of LLM models specifically for 
reasoning impacts the test accuracy and reliability. Many studies have been done to investigate 
the generalization capabilities. The paper Dziri et al. (2023) demonstrates how pattern matching 
can even hinder generalization. We are still hyperthesis that those popular LLMs based on 
transformers, BERT/GPT-3, still have challenges to fully master the semantics and reasoning for 
these complex tasks even with various “zero- or few-shots” prompting techniques. This is still an 
open and challenging area to be conquered in the iteration of LLMs in the future. 
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Another paper “Large Language Models are zero-shot 
reasoners” shows zero-shot-CoT prompt examples that 
demonstrate good reasoning capability [14]. Zero-shot 
reasoning refers to the ability of LLMs to perform multi-step 
reasoning tasks on unseen domains without any hand-crafted 
examples. It enables them to generalize knowledge from their 
training data and apply it to new, unseen situations. The idea 
behind this is to trigger LLMs by simply adding a “Let’s think 
step by step” prompt to generate a reasoning path in the 
LLM’s background processing that decomposes a complex 
problem into two or more “simpler” and breaks it down into 
sub-problems. This looks very simple, and actually, I think 
the key point behind this is we teach the model to explore 
a reasoning path that decomposes the complex reasoning 
into multiple simpler steps. This style of “Chain of thought 
prompting” demonstrated good performance in arithmetic 
and logical reasoning.

4. Limitation and Generalization
Even with zero-shot and few-shot reasoning, which are really 
prompting techniques, to help to unleash the potentials 
of LLM including GPT-3, it is still a question what is the 
boundary and limit of LLM in reasoning. The paper  was trying 
to answer this question [15]. It measured the limitation of 
transformers in compositional tasks with 3 representative 
compositional tasks: long-form multiplication, logic grid 
puzzle, and a classic dynamic programming problem. These 
experiments suggest that if an output element heavily relies 
on a single or small set of input features, transformers are 
likely to recognize such correlation during training and 
directly map these input features to predicate the output 
element in testing without going through rigorous multi-
hop reasoning. The paper hypothesizes that beyond simple 
memorization, transformers largely rely on pattern matching 
for solving these tasks. This is contradictive to the prior 
paper claiming “that our results cannot be explained solely 
by direct memorization.”

This poses an open question of how the LLM reasoning 
works. The difference in experiment observations may come 
from varied datasets or task domain settings. The result 
heavily relies on the dataset size and may scale up and down 
as the dataset scales. LLM reasoning exhibits unpredictable 
randomness and cannot generalize to large or varied 
categories of datasets. How to evaluate the quality of LLM 
models specifically for reasoning impacts the test accuracy 
and reliability. Many studies have been done to investigate 
the generalization capabilities. The paper demonstrates 
how pattern matching can even hinder generalization [15]. 
We are still hyperthesis that those popular LLMs based on 
transformers, BERT/GPT-3, still have challenges to fully 
master the semantics and reasoning for these complex 
tasks even with various “zero- or few-shots” prompting 
techniques. This is still an open and challenging area to be 
conquered in the iteration of LLMs in the future.

5. Discussion
GPT-4 GPT-4 self-corrected itself in the middle of writing 
his answer if you told it’s wrong. This could be prompted by 
human feedback to guide the model to choose another path 

or choose a secondary good answer as a backup. Considering 
the earlier section few-shot and zero-shot reasoning, it is a 
topic to empower the model itself to do self-reasoning and 
fact-check before replying. Harmful information LLM may 
generate instructions for dangerous or potentially harmful 
or illegal activities. The LLM may not tell the difference 
between bad and good. Actually, it is even arguable for 
humans to reliable to distinguish without full knowledge. 
This is still an open big question of how to improve the 
robustness and safety of language models.

6. Conclusion
We started from BERTology and GPT-3 3, studied the 
capability from syntax knowledge 4.1, world knowledge 
4.3, Semantic Knowledge 4.2, and contextual information. 
The surface knowledge including syntax could be easier to 
retrieve from statistical patterns and attention mechanisms 
of transformer-based models. We also learned the difference 
between linguistic form and semantic meaning 4.4. It is 
not that obvious and even challenging to learn Semantic 
knowledge and reasoning capability. Although some 
recent studies are showing that few-shot and zero-shot 
reasoning by Chain-of-Thought prompting can empower 
LLMs with stronger reasoning capability 4.6 to break down 
complex problems, there is an open question of how to fully 
understand natural language like Human does.

References
1.	 Rogers, A., Kovaleva, O., & Rumshisky, A. (2021). A 

primer in BERTology: What we know about how BERT 
works. Transactions of the Association for Computational 
Linguistics, 8, 842-866.

2.	 Glavaš, G., & Vulić, I. (2020). Is supervised syntactic 
parsing beneficial for language understanding? an 
empirical investigation. arXiv preprint arXiv:2008.06788.

3.	 Ravishankar, V., Kulmizev, A., Abdou, M., Søgaard, A., & 
Nivre, J. (2021). Attention can reflect syntactic structure 
(if you let it). arXiv preprint arXiv:2101.10927.

4.	 Zhang, L., Wang, M., Chen, L., & Zhang, W. (2022, 
December). Probing GPT-3’s linguistic knowledge on 
semantic tasks. In Proceedings of the Fifth BlackboxNLP 
Workshop on Analyzing and Interpreting Neural Networks 
for NLP (pp. 297-304).

5.	 Da, J., & Kasai, J. (2019). Cracking the contextual 
commonsense code: Understanding commonsense 
reasoning aptitude of deep contextual representations. 
arXiv preprint arXiv:1910.01157.

6.	 Tandon, N., De Melo, G., & Weikum, G. (2017, July). 
Webchild 2.0: Fine-grained commonsense knowledge 
distillation. In Proceedings of ACL 2017, System 
Demonstrations (pp. 115-120).

7.	 Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie, 
N., Rashkin, H., ... & Choi, Y. (2019, July). Atomic: An 
atlas of machine commonsense for if-then reasoning. 
In Proceedings of the AAAI conference on artificial 
intelligence (Vol. 33, No. 01, pp. 3027-3035).

8.	 Lai, G., Xie, Q., Liu, H., Yang, Y., & Hovy, E. (2017). Race: 
Large-scale reading comprehension dataset from 
examinations. arXiv preprint arXiv:1704.04683.

9.	 Ostermann, S., Modi, A., Roth, M., Thater, S., & Pinkal, M. 

https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.48550/arXiv.2008.06788
https://doi.org/10.48550/arXiv.2008.06788
https://doi.org/10.48550/arXiv.2008.06788
https://doi.org/10.48550/arXiv.2101.10927
https://doi.org/10.48550/arXiv.2101.10927
https://doi.org/10.48550/arXiv.2101.10927
https://doi.org/10.18653/v1/2022.blackboxnlp-1.24
https://doi.org/10.18653/v1/2022.blackboxnlp-1.24
https://doi.org/10.18653/v1/2022.blackboxnlp-1.24
https://doi.org/10.18653/v1/2022.blackboxnlp-1.24
https://doi.org/10.18653/v1/2022.blackboxnlp-1.24
https://doi.org/10.48550/arXiv.1910.01157
https://doi.org/10.48550/arXiv.1910.01157
https://doi.org/10.48550/arXiv.1910.01157
https://doi.org/10.48550/arXiv.1910.01157
https://doi.org/10.18653/v1/P17-4020
https://doi.org/10.18653/v1/P17-4020
https://doi.org/10.18653/v1/P17-4020
https://doi.org/10.18653/v1/P17-4020
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.48550/arXiv.1704.04683
https://doi.org/10.48550/arXiv.1704.04683
https://doi.org/10.48550/arXiv.1704.04683
https://doi.org/10.48550/arXiv.1803.05223


Volume - 1 Issue - 1

Page 7 of 7

Copyright © Yong YangJournal of Advances in Civil and Mechanical Engineering

Citation: Yang, Y. (2024). Understanding Natural Language Beyond Surface by LLMs. J Adv Civil Mech Eng, 1(1), 1- 7. 

(2018). Mcscript: A novel dataset for assessing machine 
comprehension using script knowledge. arXiv preprint 
arXiv:1803.05223.

10.	 Bender, E. M., & Koller, A. (2020, July). Climbing towards 
NLU: On meaning, form, and understanding in the age 
of data. In Proceedings of the 58th annual meeting of 
the association for computational linguistics (pp. 5185-
5198).

11.	 Miceli-Barone, A. V., Barez, F., Konstas, I., & Cohen, S. 
B. (2023). The larger they are, the harder they fail: 
Language models do not recognize identifier swaps in 
python. arXiv preprint arXiv:2305.15507.

12.	 Wu, D., Zhang, J., & Huang, X. (2023). Chain of thought 

prompting elicits knowledge augmentation. arXiv 
preprint arXiv:2307.01640.

13.	 Chen, W. (2022). Large language models are few (1)-
shot table reasoners. arXiv preprint arXiv:2210.06710.

14.	 Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. 
(2022). Large language models are zero-shot reasoners. 
Advances in neural information processing systems, 35, 
22199-22213.

15.	 Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y., ... 
& Choi, Y. (2024). Faith and fate: Limits of transformers 
on compositionality. Advances in Neural Information 
Processing Systems, 36.

https://doi.org/10.48550/arXiv.1803.05223
https://doi.org/10.48550/arXiv.1803.05223
https://doi.org/10.48550/arXiv.1803.05223
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.48550/arXiv.2305.15507
https://doi.org/10.48550/arXiv.2305.15507
https://doi.org/10.48550/arXiv.2305.15507
https://doi.org/10.48550/arXiv.2305.15507
https://doi.org/10.48550/arXiv.2307.01640
https://doi.org/10.48550/arXiv.2307.01640
https://doi.org/10.48550/arXiv.2307.01640
https://doi.org/10.48550/arXiv.2210.06710
https://doi.org/10.48550/arXiv.2210.06710
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/deb3c28192f979302c157cb653c15e90-Abstract-Conference.html

