
Volume - 2 Issue - 2

Page 1 of 10
Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

 Journal of
Biomedical and Engineering Research

Richard Murdoch Montgomery*

Universidade de Aveiro, Portugal.

Techniques for Outlier Detection: A Comprehensive View

Accepted: 2024 Nov 20Received: 2024 Oct 10

Corresponding Author: Richard Murdoch Montgomery,
Universidade de Aveiro, Portugal. Email id: montgomery@
alumni.usp.br

Published: 2024 Nov 19

Research Article

Abstract
Outlier detection is a critical technique across various domains, including statistics, data science, machine learning, and finance.
Outliers, data points that differ significantly from the majority, can indicate errors, anomalies, or even new insights. This article
provides an in-depth exploration of the primary techniques used to detect outliers, categorized into statistical methods, machine
learning-based approaches, and proximity-based methods. We discuss the advantages, limitations, and specific use cases of
each technique, highlighting their applicability to different types of datasets. The goal is to equip practitioners with a better
understanding of how to identify and handle outliers effectively in real-world data analysis.

Keywords: Outlier detection; statistical methods; Z-score; IQR; machine learning; Isolation Forest; SVM; Autoencoders;
proximity-based methods; KNN; LOF

1. Introduction
1.1 Outlier Detection
Outlier detection is a critical aspect of data analysis, machine
learning, and various scientific fields. Outliers, or anomalies,
refer to data points that deviate significantly from the
general pattern in a dataset. Their identification is vital for
a variety of reasons: they can represent noise or errors in
the data, but in some cases, outliers may signal valuable
information such as identifying rare but important events,
fraudulent activities, or even new discoveries in research [1].
Consequently, detecting and managing outliers effectively is
crucial to ensuring the accuracy and reliability of data-driven
models.

1.2 The Importance of Outlier Detection
Outliers can arise for several reasons, including
measurement errors, data entry mistakes, or genuine
anomalies. For example, in the financial sector, outliers may
indicate suspicious transactions that could signal fraud
[2]. In manufacturing, they might point to malfunctioning
equipment. Effective detection of these outliers is critical for
several reasons:
1. Model Integrity: Outliers can skew results in machine
learning models, leading to inaccurate predictions or biased
estimations [3]. For instance, outliers may cause overfitting,
where the model becomes too attuned to anomalies rather
than representing the overall data structure accurately [4].
2. Data Cleaning: In many cases, outliers are due to data
errors, such as sensor malfunctions or incorrect data
entries. Identifying and removing these outliers is crucial to
improving the quality of the dataset, which in turn enhances
the performance of machine learning algorithms [5].
3. Anomaly Detection: Sometimes, outliers represent

meaningful anomalies rather than noise. Detecting these
can lead to crucial insights, such as identifying network
intrusions in cybersecurity or detecting disease outbreaks in
healthcare data (Chandola, Banerjee, & Kumar, 2009). These
examples illustrate the value of outlier detection in real-world
applications, where finding anomalies can drive business
decisions or public health interventions.

1.3 Types of Outlier Detection Techniques
Several techniques exist for detecting outliers, which can be
classified into three major categories: statistical methods,
machine learning-based approaches, and proximity-based
methods. Each has its advantages and is suitable for specific
types of data and applications.

1.4 Statistical Methods for Outlier Detection
Statistical methods are among the oldest and most widely
applied techniques for outlier detection. These methods
typically rely on the assumption that the data follows a
specific distribution, such as a normal distribution, to
identify points that deviate from the expected behavior.

A. Z-Score Method
The Z-Score method measures the number of standard
deviations a data point lies from the mean. It’s a popular
technique for detecting outliers in normally distributed
data, with data points typically considered outliers if they
have a Z-score greater than 3 or less than -3 (Madsen, 2007).
This method is efficient for datasets that follow a normal
distribution but becomes less effective with non- normal
data, where the presence of outliers may distort the mean
and standard deviation.

Volume - 2 Issue - 2

Page 2 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

B. Boxplot and Interquartile Range (IQR)
A Boxplot visualizes data distribution using quartiles and
identifies outliers based on the Interquartile Range (IQR).
Outliers are data points that lie beyond 1.5 times the IQR
above the third quartile or below the first quartile [18]. The
IQR method is robust and works well even with non-normal
distributions [6]. However, it may not perform optimally
when applied to datasets with high dimensionality or when
multiple variables interact non-linearly.

C. Machine Learning-Based Approaches
With the growing complexity of data, machine learning-based
methods have become increasingly popular for detecting
outliers. These techniques are highly flexible, capable of
identifying complex patterns in data without making strong
assumptions about the distribution.

D. Isolation Forest
The Isolation Forest is an unsupervised machine learning
algorithm designed for anomaly detection. It isolates data
points by constructing random decision trees and identifies
anomalies as points that are isolated more quickly [7].
Isolation Forest is scalable and efficient for large datasets,
making it suitable for modern big data environments.
However, it can be sensitive to hyperparameter settings,
such as the number of trees and sample size [8].

E. Support Vector Machines (SVM) for One-Class
Classification
The One-Class SVM is a variation of the traditional SVM that
focuses on learning the boundary for normal data points,
classifying those outside this boundary as anomalies [9].
This method is highly effective in high-dimensional spaces
and can handle non-linear relationships between variables
by using kernel functions. However, SVMs require careful
parameter tuning and are computationally intensive for
large datasets [10].

F. Autoencoders
G. Autoencoders are neural networks used in unsupervised
learning tasks like anomaly detection. The network learns to
compress data into a lower-dimensional space (encoding)
and reconstructs it back to its original form (decoding).
Outliers are identified by their high reconstruction error, as
the autoencoder struggles to reconstruct these anomalous
points [11]. Autoencoders are particularly useful in high-
dimensional data, such as time series or images, but they
require substantial amounts of training data and are
computationally expensive to train and deploy.

1.5 Proximity-Based Methods
Proximity-based methods detect outliers by comparing the
distance of a data point from its neighbors. The assumption
is that normal data points are close to each other, while
outliers are more isolated.

A. K-Nearest Neighbors (KNN)
The K-Nearest Neighbors (KNN) algorithm identifies
outliers by calculating the average distance of each point to
its nearest neighbors. A point is considered an outlier if this

distance is significantly greater than the average distance of
its neighbors [12]. KNN is simple to implement but becomes
computationally expensive as the dataset size grows.
Additionally, its performance is sensitive to the choice of kkk,
the number of neighbors, which must be carefully selected
based on the dataset [13].

B. Local Outlier Factor (LOF)
The Local Outlier Factor (LOF) improves upon KNN by
incorporating local density into its calculations. It measures
the local density of a point relative to its neighbors, identifying
outliers as points with significantly lower density than their
surrounding points [12]. LOF is effective in datasets where
anomalies occur in regions with varying densities, such
as fraud detection in financial data or network intrusion
detection [14]. However, it is sensitive to hyperparameters
and may not scale well to extremely large datasets.

1.6 Challenges in Outlier Detection
Despite the variety of techniques available, outlier detection
presents several challenges:
High Dimensionality: As the number of features increases,
the difficulty of detecting outliers grows. In high-dimensional
spaces, traditional methods like Z-Score and IQR may fail to
capture complex relationships between variables. Machine
learning-based methods like Autoencoders and One-Class
SVMs are more suitable in such cases, but they come with
increased computational costs [1].
A. Scalability: Many proximity-based techniques, like KNN
and LOF, suffer from scalability issues in large datasets
because they require calculating distances between all
points. Techniques such as Isolation Forest are better suited
for large-scale applications due to their efficiency in handling
vast amounts of data [7].
B. Imbalanced Data: In many cases, outliers constitute a
small portion of the dataset. This imbalance can affect the
performance of certain algorithms, which may be biased
toward detecting the majority class. Approaches like
resampling, ensemble learning, or cost-sensitive learning
can help address this issue (He & Garcia, 2009). Outlier
detection is essential for improving data quality, ensuring
model integrity, and identifying critical anomalies in various
domains. While simple statistical methods like Z-Score and
IQR are effective for smaller, normally distributed datasets,
more sophisticated techniques, such as Isolation Forest and
Autoencoders, are better suited for large, high-dimensional
data. The appropriate choice of method depends on the
nature of the dataset, the complexity of the data structure,
and the specific application at hand. The challenges of high-
dimensional data, scalability, and imbalanced datasets
continue to push the boundaries of outlier detection
research. Future advances are likely to focus on developing
more scalable and flexible techniques capable of adapting to
the growing complexity of modern datasets.

2. Methodology
2.1 Machine Learning Approaches for Outlier Detection
Machine learning methods for outlier detection are powerful
because they can identify complex patterns and relationships
within data without relying on strong assumptions about

Volume - 2 Issue - 2

Page 3 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

data distributions. In this section, we focus on several
prominent machine learning techniques for outlier
detection: Isolation Forest, Support Vector Machines (SVM)
for one-class classification, and Autoencoders. Each method
is discussed with a mathematical framework, including
relevant equations for a formal understanding.

2.2 Isolation Forest
The Isolation Forest is an ensemble method designed for
anomaly detection by isolating data points using random
decision trees. The core idea behind the method is that
outliers are easier to isolate compared to normal data points
due to their sparse nature. Let's formalize this.

Random Partitioning and Isolation
Isolation Forest works by recursively partitioning the data
until each data point is isolated. A random feature 𝑋𝑗 is
selected, and then a random split is made between the
minimum and maximum values of that feature in the current
subset of the data. For a data point 𝑥𝑖 , the path length ℎ(𝑥𝑖),
representing the number of splits required to isolate 𝑥𝑖,
forms the basis of the anomaly score.

The Anomaly Score s(xi) for a Given Point xi is Computed
as Follows:

Where E[h(xi)] is the Expected Path Length of xi, and c(n)
is the Average Path Length of a Binary Search Tree, Given
by:

Where H(i) is the Harmonic Number:

Anomaly score 𝑠(𝑥𝑖) ranges between 0 and 1, where points
closer to 1 are more likely to be anomalies.

Threshold for Anomalies: After computing the anomaly
scores for all data points, a threshold can be set to label
points as outliers. Typically, a score of 0.5 is considered
the cutoff, with points scoring above 0.5 being classified as
outliers, though this threshold can be adjusted based on
domain-specific requirements.

2.3 Support Vector Machines (SVM) for One-Class
Classification
One-class Support Vector Machines (SVM) are a popular
method for outlier detection, particularly when dealing
with high-dimensional data. The method works by finding
a hyperplane that separates the data points from the origin
(assuming they are mapped to a feature space through a
kernel function). The algorithm attempts to find the maximal
margin hyperplane that encloses the majority of the data
points, considering those that fall outside as outliers.

2.4 Mathematical Formulation
Given a Training set {x1, x2, … , xn}, where xi ∈ ℝd, the
Goal is to Find a Decision Function f(x) Such that:

Where 𝜙(𝑥) is a Mapping of the Input Data Into a Higher-
Dimensional Space, 𝑤 is a Weight Vector, and 𝜌 is the Bias
Term. The Optimization Problem for one-class SVM is
Defined as:

Subject to the Constraints:
 𝑤𝑇𝜙(𝑥𝑖) ≥ 𝜌 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛

Here, 𝜉𝑖 represents the slack variable, which allows for some
points to fall outside the decision boundary, and 𝜈 ∈ (0,1]
is a hyperparameter that controls the trade-off between
maximizing the margin and the amount of training error
allowed.

2.5 Anomaly Detection
After solving the optimization problem, the decision function
𝑓(𝑥) is used to classify new data points. If 𝑓(𝑥) < 0, the point
is classified as an anomaly. The kernel trick can be used to
apply this method in non-linear feature spaces, such as the
radial basis function (RBF) kernel:

 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖)

Where 𝛾 is the kernel parameter that controls the influence
of each training point on the decision boundary.

2.6 Autoencoders for Outlier Detection
Autoencoders are a type of neural network designed to
learn a compressed representation of the input data.
They are composed of two main parts: an encoder that
maps the input to a lower dimensional latent space, and a
decoder that attempts to reconstruct the input from the
latent representation. The idea is that normal data points
will be well-reconstructed, while outliers will have high
reconstruction errors.

2.7 Neural Network Structure
Given an input 𝑥 ∈ ℝ𝑑 , the encoder 𝑓𝜃(𝑥) maps it to a latent
space 𝑧 ∈ ℝ𝑘 , with 𝑘 < 𝑑, as follows:

 𝑧 = 𝑓𝜃(𝑥) = 𝜎(𝑊𝑒𝑥 + 𝑏𝑒)

Where 𝑊𝑒 and 𝑏𝑒 are the weight matrix and bias vector of
the encoder, respectively, and 𝜎(⋅) is a non-linear activation
function such as Re LU or Sigmoid. The decoder 𝑔𝜃(𝑧) then
maps 𝑧 back to the input space:

 𝑥ˆ = 𝑔𝜃(𝑧) = 𝜎(𝑊𝑑𝑧 + 𝑏𝑑)

Where 𝑊𝑑 and 𝑏𝑑 are the weight matrix and bias vector of the
decoder, respectively.

 4

Outlier detection is essential for improving data quality, ensuring model integrity, and
identifying critical anomalies in various domains. While simple statistical methods like Z-Score and
IQR are effective for smaller, normally distributed datasets, more sophisticated techniques, such as
Isolation Forest and Autoencoders, are better suited for large, high-dimensional data. The
appropriate choice of method depends on the nature of the dataset, the complexity of the data
structure, and the specific application at hand.

The challenges of high-dimensional data, scalability, and imbalanced datasets continue to push
the boundaries of outlier detection research. Future advances are likely to focus on developing more
scalable and flexible techniques capable of adapting to the growing complexity of modern datasets.

 2. Methodology

2.1. Machine Learning Approaches for Outlier Detection

Machine learning methods for outlier detection are powerful because they can identify complex
patterns and relationships within data without relying on strong assumptions about data
distributions. In this section, we focus on several prominent machine learning techniques for outlier
detection: Isolation Forest, Support Vector Machines (SVM) for one-class classification, and Autoencoders.
Each method is discussed with a mathematical framework, including relevant equations for a formal
understanding.

 2.1.1 Isolation Forest

The Isolation Forest is an ensemble method designed for anomaly detection by isolating data
points using random decision trees. The core idea behind the method is that outliers are easier to
isolate compared to normal data points due to their sparse nature. Let's formalize this.
A) Random Partitioning and Isolation

Isolation Forest works by recursively partitioning the data until each data point is isolated. A
random feature 𝑋𝑋𝑗𝑗 is selected, and then a random split is made between the minimum and maximum
values of that feature in the current subset of the data. For a data point 𝑥𝑥𝑖𝑖 , the path length ℎ(𝑥𝑥𝑖𝑖),
representing the number of splits required to isolate 𝑥𝑥𝑖𝑖, forms the basis of the anomaly score.

The anomaly score 𝑠𝑠(𝑥𝑥𝑖𝑖) for a given point 𝑥𝑥𝑖𝑖 is computed as follows:

𝑠𝑠(𝑥𝑥𝑖𝑖) = 2−
𝐸𝐸ℎ(𝑥𝑥𝑖𝑖)]
𝑐𝑐(𝑛𝑛)

where 𝐸𝐸[ℎ(𝑥𝑥𝑖𝑖)] is the expected path length of 𝑥𝑥𝑖𝑖 , and 𝑐𝑐(𝑛𝑛) is the average path length of a
binary search tree, given by:

𝑐𝑐(𝑛𝑛) = 2𝐻𝐻(𝑛𝑛 − 1) − 2(𝑛𝑛 − 1)
𝑛𝑛

where 𝐻𝐻(𝑖𝑖) is the harmonic number:

𝐻𝐻(𝑖𝑖) = ∑  
𝑖𝑖

𝑘𝑘=1

1
𝑘𝑘

Anomaly score 𝑠𝑠(𝑥𝑥𝑖𝑖) ranges between 0 and 1, where points closer to 1 are more likely to be anomalies.
Threshold for Anomalies

After computing the anomaly scores for all data points, a threshold can be set to label points as
outliers. Typically, a score of 0.5 is considered the cutoff, with points scoring above 0.5 being classified as
outliers, though this threshold can be adjusted based on domain-specific requirements.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2024 doi:10.20944/preprints202410.1603.v1

 4

Outlier detection is essential for improving data quality, ensuring model integrity, and
identifying critical anomalies in various domains. While simple statistical methods like Z-Score and
IQR are effective for smaller, normally distributed datasets, more sophisticated techniques, such as
Isolation Forest and Autoencoders, are better suited for large, high-dimensional data. The
appropriate choice of method depends on the nature of the dataset, the complexity of the data
structure, and the specific application at hand.

The challenges of high-dimensional data, scalability, and imbalanced datasets continue to push
the boundaries of outlier detection research. Future advances are likely to focus on developing more
scalable and flexible techniques capable of adapting to the growing complexity of modern datasets.

 2. Methodology

2.1. Machine Learning Approaches for Outlier Detection

Machine learning methods for outlier detection are powerful because they can identify complex
patterns and relationships within data without relying on strong assumptions about data
distributions. In this section, we focus on several prominent machine learning techniques for outlier
detection: Isolation Forest, Support Vector Machines (SVM) for one-class classification, and Autoencoders.
Each method is discussed with a mathematical framework, including relevant equations for a formal
understanding.

 2.1.1 Isolation Forest

The Isolation Forest is an ensemble method designed for anomaly detection by isolating data
points using random decision trees. The core idea behind the method is that outliers are easier to
isolate compared to normal data points due to their sparse nature. Let's formalize this.
A) Random Partitioning and Isolation

Isolation Forest works by recursively partitioning the data until each data point is isolated. A
random feature 𝑋𝑋𝑗𝑗 is selected, and then a random split is made between the minimum and maximum
values of that feature in the current subset of the data. For a data point 𝑥𝑥𝑖𝑖 , the path length ℎ(𝑥𝑥𝑖𝑖),
representing the number of splits required to isolate 𝑥𝑥𝑖𝑖, forms the basis of the anomaly score.

The anomaly score 𝑠𝑠(𝑥𝑥𝑖𝑖) for a given point 𝑥𝑥𝑖𝑖 is computed as follows:

𝑠𝑠(𝑥𝑥𝑖𝑖) = 2−
𝐸𝐸ℎ(𝑥𝑥𝑖𝑖)]
𝑐𝑐(𝑛𝑛)

where 𝐸𝐸[ℎ(𝑥𝑥𝑖𝑖)] is the expected path length of 𝑥𝑥𝑖𝑖 , and 𝑐𝑐(𝑛𝑛) is the average path length of a
binary search tree, given by:

𝑐𝑐(𝑛𝑛) = 2𝐻𝐻(𝑛𝑛 − 1) − 2(𝑛𝑛 − 1)
𝑛𝑛

where 𝐻𝐻(𝑖𝑖) is the harmonic number:

𝐻𝐻(𝑖𝑖) = ∑  
𝑖𝑖

𝑘𝑘=1

1
𝑘𝑘

Anomaly score 𝑠𝑠(𝑥𝑥𝑖𝑖) ranges between 0 and 1, where points closer to 1 are more likely to be anomalies.
Threshold for Anomalies

After computing the anomaly scores for all data points, a threshold can be set to label points as
outliers. Typically, a score of 0.5 is considered the cutoff, with points scoring above 0.5 being classified as
outliers, though this threshold can be adjusted based on domain-specific requirements.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2024 doi:10.20944/preprints202410.1603.v1

 4

Outlier detection is essential for improving data quality, ensuring model integrity, and
identifying critical anomalies in various domains. While simple statistical methods like Z-Score and
IQR are effective for smaller, normally distributed datasets, more sophisticated techniques, such as
Isolation Forest and Autoencoders, are better suited for large, high-dimensional data. The
appropriate choice of method depends on the nature of the dataset, the complexity of the data
structure, and the specific application at hand.

The challenges of high-dimensional data, scalability, and imbalanced datasets continue to push
the boundaries of outlier detection research. Future advances are likely to focus on developing more
scalable and flexible techniques capable of adapting to the growing complexity of modern datasets.

 2. Methodology

2.1. Machine Learning Approaches for Outlier Detection

Machine learning methods for outlier detection are powerful because they can identify complex
patterns and relationships within data without relying on strong assumptions about data
distributions. In this section, we focus on several prominent machine learning techniques for outlier
detection: Isolation Forest, Support Vector Machines (SVM) for one-class classification, and Autoencoders.
Each method is discussed with a mathematical framework, including relevant equations for a formal
understanding.

 2.1.1 Isolation Forest

The Isolation Forest is an ensemble method designed for anomaly detection by isolating data
points using random decision trees. The core idea behind the method is that outliers are easier to
isolate compared to normal data points due to their sparse nature. Let's formalize this.
A) Random Partitioning and Isolation

Isolation Forest works by recursively partitioning the data until each data point is isolated. A
random feature 𝑋𝑋𝑗𝑗 is selected, and then a random split is made between the minimum and maximum
values of that feature in the current subset of the data. For a data point 𝑥𝑥𝑖𝑖 , the path length ℎ(𝑥𝑥𝑖𝑖),
representing the number of splits required to isolate 𝑥𝑥𝑖𝑖, forms the basis of the anomaly score.

The anomaly score 𝑠𝑠(𝑥𝑥𝑖𝑖) for a given point 𝑥𝑥𝑖𝑖 is computed as follows:

𝑠𝑠(𝑥𝑥𝑖𝑖) = 2−
𝐸𝐸ℎ(𝑥𝑥𝑖𝑖)]
𝑐𝑐(𝑛𝑛)

where 𝐸𝐸[ℎ(𝑥𝑥𝑖𝑖)] is the expected path length of 𝑥𝑥𝑖𝑖 , and 𝑐𝑐(𝑛𝑛) is the average path length of a
binary search tree, given by:

𝑐𝑐(𝑛𝑛) = 2𝐻𝐻(𝑛𝑛 − 1) − 2(𝑛𝑛 − 1)
𝑛𝑛

where 𝐻𝐻(𝑖𝑖) is the harmonic number:

𝐻𝐻(𝑖𝑖) = ∑  
𝑖𝑖

𝑘𝑘=1

1
𝑘𝑘

Anomaly score 𝑠𝑠(𝑥𝑥𝑖𝑖) ranges between 0 and 1, where points closer to 1 are more likely to be anomalies.
Threshold for Anomalies

After computing the anomaly scores for all data points, a threshold can be set to label points as
outliers. Typically, a score of 0.5 is considered the cutoff, with points scoring above 0.5 being classified as
outliers, though this threshold can be adjusted based on domain-specific requirements.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2024 doi:10.20944/preprints202410.1603.v1

 5

 2.2. Support Vector Machines (SVM) for One-Class Classification

One-class Support Vector Machines (SVM) are a popular method for outlier detection, particularly when
dealing with high-dimensional data. The method works by finding a hyperplane that separates the data points
from the origin (assuming they are mapped to a feature space through a kernel function). The algorithm
attempts to find the maximal margin hyperplane that encloses the majority of the data points, considering
those that fall outside as outliers.

 2.2.1 Mathematical Formulation

Given a training set {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑, the goal is to find a decision function 𝑓𝑓(𝑥𝑥)
such that:

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥) − 𝜌𝜌

where 𝜙𝜙(𝑥𝑥) is a mapping of the input data into a higher-dimensional space, 𝑤𝑤 is a weight
vector, and 𝜌𝜌 is the bias term. The optimization problem for one-class SVM is defined as:

min
𝑤𝑤,𝜉𝜉𝑖𝑖,𝜌𝜌

 12 ‖𝑤𝑤‖2 + 1
𝜈𝜈𝜈𝜈 ∑  

𝑛𝑛

𝑖𝑖=1
𝜉𝜉𝑖𝑖 − 𝜌𝜌

subject to the constraints:

𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) ≥ 𝜌𝜌 − 𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … , 𝑛𝑛

Here, 𝜉𝜉𝑖𝑖 represents the slack variable, which allows for some points to fall outside the decision
boundary, and 𝜈𝜈 ∈ (0,1] is a hyperparameter that controls the trade-off between maximizing the
margin and the amount of training error allowed.

Anomaly Detection
After solving the optimization problem, the decision function 𝑓𝑓(𝑥𝑥) is used to classify new data

points. If 𝑓𝑓(𝑥𝑥) < 0, the point is classified as an anomaly. The kernel trick can be used to apply this
method in non-linear feature spaces, such as the radial basis function (RBF) kernel:

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = exp (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖2)

where 𝛾𝛾 is the kernel parameter that controls the influence of each training point on the decision
boundary.

3. Autoencoders for Outlier Detection

Autoencoders are a type of neural network designed to learn a compressed representation of the
input data. They are composed of two main parts: an encoder that maps the input to a lower
dimensional latent space, and a decoder that attempts to reconstruct the input from the latent
representation. The idea is that normal data points will be well-reconstructed, while outliers will have
high reconstruction errors.

 2.3.1 Neural Network Structure

Given an input 𝑥𝑥 ∈ ℝ𝑑𝑑 , the encoder 𝑓𝑓𝜃𝜃(𝑥𝑥) maps it to a latent space 𝑧𝑧 ∈ ℝ𝑘𝑘 , with 𝑘𝑘 < 𝑑𝑑 , as
follows:

𝑧𝑧 = 𝑓𝑓𝜃𝜃(𝑥𝑥) = 𝜎𝜎(𝑊𝑊𝑒𝑒𝑥𝑥 + 𝑏𝑏𝑒𝑒)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2024 doi:10.20944/preprints202410.1603.v1

 5

 2.2. Support Vector Machines (SVM) for One-Class Classification

One-class Support Vector Machines (SVM) are a popular method for outlier detection, particularly when
dealing with high-dimensional data. The method works by finding a hyperplane that separates the data points
from the origin (assuming they are mapped to a feature space through a kernel function). The algorithm
attempts to find the maximal margin hyperplane that encloses the majority of the data points, considering
those that fall outside as outliers.

 2.2.1 Mathematical Formulation

Given a training set {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}, where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑, the goal is to find a decision function 𝑓𝑓(𝑥𝑥)
such that:

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥) − 𝜌𝜌

where 𝜙𝜙(𝑥𝑥) is a mapping of the input data into a higher-dimensional space, 𝑤𝑤 is a weight
vector, and 𝜌𝜌 is the bias term. The optimization problem for one-class SVM is defined as:

min
𝑤𝑤,𝜉𝜉𝑖𝑖,𝜌𝜌

 12 ‖𝑤𝑤‖2 + 1
𝜈𝜈𝜈𝜈 ∑  

𝑛𝑛

𝑖𝑖=1
𝜉𝜉𝑖𝑖 − 𝜌𝜌

subject to the constraints:

𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) ≥ 𝜌𝜌 − 𝜉𝜉𝑖𝑖, 𝜉𝜉𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … , 𝑛𝑛

Here, 𝜉𝜉𝑖𝑖 represents the slack variable, which allows for some points to fall outside the decision
boundary, and 𝜈𝜈 ∈ (0,1] is a hyperparameter that controls the trade-off between maximizing the
margin and the amount of training error allowed.

Anomaly Detection
After solving the optimization problem, the decision function 𝑓𝑓(𝑥𝑥) is used to classify new data

points. If 𝑓𝑓(𝑥𝑥) < 0, the point is classified as an anomaly. The kernel trick can be used to apply this
method in non-linear feature spaces, such as the radial basis function (RBF) kernel:

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = exp (−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗‖2)

where 𝛾𝛾 is the kernel parameter that controls the influence of each training point on the decision
boundary.

3. Autoencoders for Outlier Detection

Autoencoders are a type of neural network designed to learn a compressed representation of the
input data. They are composed of two main parts: an encoder that maps the input to a lower
dimensional latent space, and a decoder that attempts to reconstruct the input from the latent
representation. The idea is that normal data points will be well-reconstructed, while outliers will have
high reconstruction errors.

 2.3.1 Neural Network Structure

Given an input 𝑥𝑥 ∈ ℝ𝑑𝑑 , the encoder 𝑓𝑓𝜃𝜃(𝑥𝑥) maps it to a latent space 𝑧𝑧 ∈ ℝ𝑘𝑘 , with 𝑘𝑘 < 𝑑𝑑 , as
follows:

𝑧𝑧 = 𝑓𝑓𝜃𝜃(𝑥𝑥) = 𝜎𝜎(𝑊𝑊𝑒𝑒𝑥𝑥 + 𝑏𝑏𝑒𝑒)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 October 2024 doi:10.20944/preprints202410.1603.v1

Volume - 2 Issue - 2

Page 4 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

2.8 Reconstruction Error
The reconstruction error for each data point is calculated
as the difference between the original input 𝑥 and its
reconstruction 𝑥ˆ :

 𝐿(𝑥, 𝑥ˆ) = ‖𝑥 − 𝑥ˆ‖2

If the reconstruction error exceeds a pre-defined threshold, the
data point is classified as an outlier. The threshold is usually
determined empirically by analyzing the distribution of
reconstruction errors across the dataset.

2.9 Hyperparameter Selection
In all machine learning methods for outlier detection,
hyperparameter tuning is crucial to optimize performance.
For Isolation Forest, the number of trees and sub-sample
size are important hyperparameters that control the
effectiveness of anomaly detection (Liu, Ting, & Zhou, 2008).
In the case of one-class SVMs, the choice of kernel and the
value of 𝜈 significantly affect the decision boundary's shape
and the model's sensitivity to outliers. For autoencoders,
the architecture (number of layers, neurons per layer), the
activation function, and the threshold for reconstruction
error must be carefully selected.
Overall, machine learning approaches for outlier detection
provide powerful tools for identifying anomalies in complex,
high-dimensional datasets. Isolation Forest isolates data points

using random partitioning, while one-class SVMs construct a
boundary around normal data points in a high dimensional
space. Autoencoders learn a compressed representation
of the data and detect anomalies based on reconstruction
errors. Each method offers advantages depending on the
nature of the dataset, with the mathematical formulations
providing a rigorous foundation for their operation.

3. Results
3.1 Outlier Detection Using Machine Learning Methods
In this section, we discuss the graphical outputs generated
by each machine learning method for outlier detection:
Isolation Forest, One-Class SVM, and Autoencoder. Each
method was applied to a synthetic dataset containing both
normal data points and artificially generated outliers. The
results highlight the strengths and weaknesses of each
approach.

3.2 Isolation Forest
In the graph generated by the Isolation Forest method
(Graph 1), we can observe that the algorithm has effectively
separated normal data points (blue) from outliers (red). The
blue points are clustered tightly around the center of the plot,
while the red points are more spread out and located on the
edges. This aligns with the Isolation Forest's mechanism of
recursively partitioning the feature space to isolate outliers.

Graph 1: Isolation Forest Outlier Detection With Normal Data and Outliers Properly Depicted

Source: Author. Since outliers are typically more isolated
in the dataset, they are easier to "cut off" by the random
partitions. In this case, the model identified the extreme
values outside the clusters as outliers, which is expected,
given the random distribution of the outliers in the synthetic
data.

Observations:
• Effectiveness: Isolation Forest performed well, detecting
most of the outliers that were scattered around the edge of
the feature space.
• Limitations: The performance is highly dependent on the

contamination parameter, which determines the proportion
of outliers. If this is not chosen carefully, the algorithm may
misclassify normal data points as outliers.

3.3 One-Class SVM
The graph produced by the One-Class SVM algorithm (Graph
2) shows similar results to the Isolation Forest. Normal data
points (blue) are located in dense regions near the center,
while outliers (red) are scattered farther away. One-Class
SVM effectively creates a boundary around the majority of
the data points, treating points outside this boundary as
anomalies.

Volume - 2 Issue - 2

Page 5 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

Graph 2: One Class SVM Outlier Detection With Normal Data and Outliers. Source: Author

Graph 3: Autoencoder Outlier Detection: A Neural Network That Learns to Compress and Reconstruct Data Source:
Author.

This boundary-based approach is particularly useful in high-
dimensional datasets or non- linearly separable data, as it
constructs a non-linear boundary (thanks to the RBF kernel
used) that encloses most of the normal data. The decision
boundary separates normal data from outliers based on the
distance from this hyperplane.

Observations:
• Effectiveness: One-Class SVM performed well in detecting
the outliers scattered around the dense clusters. The use of
the RBF kernel helps capture the non-linearity in the dataset,
improving accuracy.
• Limitations: One-Class SVM is sensitive to hyperparameters
like the kernel parameter γ\gammaγ and ν\nuν, which
controls the fraction of outliers. Adjusting these parameters
is crucial for obtaining good results. Additionally, the
computational complexity increases significantly for larger
datasets.

3.4 Autoencoder
The Autoencoder method also produced a graph showing the
detected normal data points (blue) and outliers (red). The
Autoencoder is a neural network that learns to compress

and reconstruct the data. In this case, the normal data points
were reconstructed with minimal error, while outliers
had higher reconstruction errors, which is why they were
classified as anomalies. In the plot, we see that most of the
points near the central clusters were classified as normal
data, while the points scattered outside these clusters were
classified as outliers. The threshold for reconstruction
error (95th percentile) ensured that only the most extreme
reconstruction errors were flagged as outliers.

Observations:
• Effectiveness: The Autoencoder captured complex
patterns in the data and accurately reconstructed normal
data points. The model effectively identified outliers that
differed significantly from the majority of the data.
• Limitations: Autoencoders require substantial amounts
of data for training and are computationally expensive,
particularly when dealing with high-dimensional data.
Additionally, setting the threshold for reconstruction error is
an empirical process that can vary depending on the dataset.
Choosing a poor threshold can lead to false positives or
missed outliers.

Volume - 2 Issue - 2

Page 6 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

3.5 Summary of Results
The graphical outputs from each method highlight the
differences in their approach to detecting outliers:
• Isolation Forest: Random partitioning allows Isolation
Forest to efficiently isolate outliers, making it suitable for
large datasets with complex relationships.
• One-Class SVM: The ability to create a flexible boundary
around normal data points makes One-Class SVM effective in
high-dimensional or non-linearly separable data. However, it
is computationally intensive and requires careful parameter
tuning.
• Autoencoder: Autoencoders are powerful in identifying
outliers by measuring reconstruction error, making them
suitable for high-dimensional datasets. However, they are
resource-intensive and require substantial training data.
Each method has its strengths and is suitable for different use
cases. Isolation Forest is ideal for large-scale applications,
while One-Class SVM and Autoencoders offer advantages in
high- dimensional datasets. The choice of method depends on
the specific characteristics of the dataset and the application
context.

4. Discussion
4.1 Comparative Analysis of Machine Learning Methods
for Outlier Detection
Outlier detection is an essential task in data analysis, with
applications spanning across diverse fields, including
finance, healthcare, and cybersecurity. In this discussion,
we will evaluate the performance of the machine learning
methods used—Isolation Forest, One-Class SVM, and
Autoencoders—based on their effectiveness, computational
efficiency, scalability, and suitability for various datasets. We
will also explore their practical applications, the challenges
encountered, and the potential areas for improvement.

4.2 Machine Learning Methods for Outlier Detection:
Strengths and Weaknesses
The three machine learning methods explored each
have distinctive approaches to identifying outliers in a
dataset. While they share a common goal, their underlying
mechanisms and applications differ substantially.

4.2.1 Isolation Forest
Isolation Forest is a tree-based ensemble method explicitly
designed for anomaly detection. The method’s core idea—
isolating outliers faster than normal data points due to their
sparse nature— makes it intuitive and computationally
efficient. It excels in scenarios where the dataset is large and
high-dimensional.

4.3 Strengths
4.3.1 Scalability and Efficiency
Isolation Forest is particularly well-suited for large datasets,
as its computational complexity is logarithmic with respect
to the number of samples. The ensemble approach, where
multiple random trees are constructed, allows the algorithm
to efficiently handle high-dimensional data and complex
relationships between features[7]. Its ability to isolate points
based on random splits means that the method does not rely

on distance-based metrics or kernel transformations, which
can be computationally expensive in large datasets.

Versatility in Data Distributions: Another advantage of
Isolation Forest is its independence from any assumptions
regarding the distribution of the data. Unlike statistical
methods that require the data to follow a specific distribution
(e.g., Gaussian), Isolation Forest operates effectively in
datasets with various distributions. This versatility makes it
a popular choice in fields where data is often messy, noisy,
and highly variable, such as fraud detection in finance [8].

4.4 Weaknesses
Dependence on Hyperparameter: A notable limitation
of Isolation Forest is its sensitivity to the choice of
hyperparameters, particularly the contamination parameter,
which determines the proportion of data points classified as
outliers. If this parameter is not tuned carefully, it can lead to
high false positives or false negatives, especially in datasets
with imbalanced classes [3]. In practice, this requires domain
expertise to ensure the chosen contamination level aligns
with the expected ratio of anomalies in the dataset.

4.5 Inability to Capture Contextual Outliers
While Isolation Forest is adept at identifying global outliers—
points that deviate significantly from the majority of the
data—it may struggle with contextual outliers. Contextual
outliers are points that are anomalous only within a specific
context [14]. For example, a transaction amount might be
normal in one region but anomalous in another. Isolation
Forest’s reliance on random splits makes it less effective in
capturing these nuanced relationships between features.

4.6 One-Class Support Vector Machine (SVM)
The One-Class SVM is a variation of the traditional SVM
algorithm, which focuses on learning a boundary around
normal data points in a high-dimensional space. By creating
this boundary, it identifies points that lie outside it as
outliers. The method is particularly powerful in scenarios
involving non-linearly separable data, where the use of
kernel functions allows the model to capture complex
relationships between features.

4.7 Strengths
Effectiveness in High-Dimensional Data: One-Class SVM
excels in scenarios where the dataset is high-dimensional
and non-linearly separable. The use of the RBF kernel (or
other kernel functions) enables the algorithm to capture
intricate relationships between features and model complex
boundaries [9]. This makes it particularly suitable for
applications like network intrusion detection and image
recognition, where data often exhibits non-linear patterns.

4.8 Robustness to Complex Data Distributions
By mapping the input data into a higher-dimensional feature
space, One-Class SVM can effectively handle datasets that do
not adhere to any specific distribution. This flexibility allows
it to be applied in diverse domains, such as fraud detection,
medical diagnosis, and environmental monitoring [10] .

Volume - 2 Issue - 2

Page 7 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

4.9 Weaknesses
4.9.1 Computational Complexity
One of the primary drawbacks of One-Class SVM is its
computational expense. The algorithm requires the
computation of pairwise distances between data points,
which scales poorly with large datasets. The complexity of
One-Class SVM increases quadratically with the number of
data points, making it unsuitable for applications involving
millions of records unless the dataset is carefully pre-
processed [13].

Sensitivity to Hyperparameters: Similar to Isolation Forest,
One-Class SVM is highly sensitive to hyperparameters,
particularly the nu (ν) parameter and the gamma (γ)
parameter in the RBF kernel [9]. The nu parameter controls
the fraction of outliers that the model allows, while gamma
influences the smoothness of the decision boundary.
Improper tuning of these parameters can significantly
degrade the model’s performance, leading to false positives
or missed anomalies.

4.10 Imbalanced Data Challenges
In highly imbalanced datasets, where the number of outliers
is small compared to normal data points, One-Class SVM may
suffer from overfitting to the majority class. This can result in
a decision boundary that fails to generalize well to new data,
particularly when the anomalies are subtle or sparse [15].
Strategies like oversampling, undersampling, or adjusting
the class weights can partially mitigate this issue, but they
often introduce new challenges in model training.

4.11 Autoencoders
Autoencoders are neural networks designed to learn a
compact representation of the data (the encoding) and
subsequently reconstruct the original input from this reduced
representation (the decoding). Outliers are identified based
on their reconstruction error—the difference between the
original input and the autoencoder’s reconstruction.

4.12 Strengths
4.12.1 Effective in High-Dimensional Spaces
Autoencoders are particularly well-suited for high-
dimensional datasets, such as image data, time- series data,
and sensor data. By compressing the data into a lower-
dimensional latent space, the autoencoder can capture the
most important features, while ignoring noise and irrelevant
details [11]. This makes them powerful tools for tasks like
image anomaly detection, where detecting small deviations
from the normal pattern is critical.

4.13 Flexibility in Network Design
Autoencoders provide flexibility in designing the network
architecture, allowing users to tailor the number of layers,
neurons per layer, and activation functions to suit the specific
dataset. This flexibility is a significant advantage when
dealing with complex, high-dimensional data that requires
sophisticated feature extraction. For example, autoencoders
can be adapted for time-series anomaly detection, where
the temporal aspect of the data adds an additional layer of
complexity [16].

4.14 Weaknesses
4.14.1 Computational and Data Requirements
Despite their power, autoencoders have several limitations.
Training a deep autoencoder requires a substantial amount of
computational resources and data, particularly if the model
has multiple layers. Large datasets are necessary to ensure
the autoencoder learns a meaningful latent representation,
and training deep neural networks is time-consuming [11].
In scenarios where data is scarce or computational resources
are limited, autoencoders may not be the best choice.

4.15 Choosing the Right Threshold for Reconstruction
Error
An additional challenge with autoencoders is determining
the right threshold for classifying a data point as an
outlier based on its reconstruction error. This threshold
is often chosen empirically, based on the distribution of
reconstruction errors across the dataset. However, choosing
an inappropriate threshold can result in false positives
(classifying normal data as outliers) or false negatives (failing
to detect genuine outliers). Techniques like using percentile-
based thresholds or cross-validation can help mitigate this
issue, but they require additional computation [1].

4.16 Lack of Explainability
Finally, autoencoders, like most neural networks, suffer
from a lack of interpretability. While the model may be
able to detect outliers effectively, it provides little insight
into why a particular point is classified as an outlier. This
is particularly problematic in domains like healthcare or
finance, where explainability is critical for decision-making
[17]. Although there are ongoing research efforts to improve
the interpretability of neural networks, such as attention
mechanisms and layer- wise relevance propagation, these
techniques are not yet widely adopted in anomaly detection.

4.17 Practical Applications and Domain-Specific
Considerations
Each of the machine learning methods discussed has unique
strengths that make them more suitable for specific types of
datasets and applications. Below, we outline a few domain-
specific applications and discuss which methods are best
suited for each.

4.18 Financial Fraud Detection
In the financial sector, detecting fraud in transactions is
a critical application of outlier detection. Isolation Forest
has been widely used in this domain due to its scalability
and effectiveness in identifying fraudulent transactions,
which are typically sparse and spread across a large feature
space. Additionally, the algorithm’s ability to handle large-
scale data and its relatively low computational cost make
it ideal for real-time fraud detection [2]. For more complex
fraud patterns that involve intricate relationships between
features, One- Class SVM may offer superior performance due
to its ability to capture non-linear relationships. However,
the computational overhead associated with SVM may make
it less suitable for real-time applications.

Volume - 2 Issue - 2

Page 8 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

5. Conclusions
In this article, we explored three machine learning
techniques for outlier detection—Isolation Forest, One-Class
Support Vector Machines (SVM), and Autoencoders—each
providing unique methods for identifying anomalies within
datasets. These methods are vital in various fields, such
as finance, healthcare, cybersecurity, and manufacturing,
where detecting outliers can significantly enhance decision-
making and prevent adverse outcomes.

5.1 Summary of Findings
• Isolation Forest offers an efficient and scalable solution for
large datasets, particularly when no assumptions about the
data distribution can be made. Its strength lies in its ability to
isolate anomalies based on recursive partitioning, making it
an excellent choice for high- dimensional datasets. However,
its performance is heavily dependent on the careful tuning of
hyperparameters, such as the contamination ratio.
• One-Class SVM shines in situations involving high-
dimensional and non-linearly separable data. The ability to
leverage kernel methods allows One-Class SVM to construct
complex boundaries that effectively separate normal data
from outliers. However, its computational complexity and
sensitivity to hyperparameters like ν\nuν and γ\gammaγ can
limit its applicability in large-scale real-time environments.
• Autoencoders are highly effective in detecting anomalies
in high-dimensional data, such as images and time-series
datasets. By compressing data into a latent space and
reconstructing it, autoencoders flag anomalies based on
reconstruction error. While autoencoders are powerful
tools, they require large datasets for training, considerable
computational resources, and careful threshold selection for
classification, which may pose challenges in certain practical
applications.

5.2 Practical Implications
The choice of outlier detection method should be guided by
the specific characteristics of the dataset and the problem
domain. Isolation Forest is ideal for large-scale, complex
datasets where efficiency is a priority. One-Class SVM is suited
to high-dimensional and intricate datasets, particularly when
complex relationships between features exist. Autoencoders,
while resource- intensive, provide excellent performance in
identifying outliers in high-dimensional data, such as images
or time series, where other methods may struggle.

5.3 Challenges and Future Directions
Each method also presents certain limitations. Future
research and development should focus on improving the
explainability of machine learning models like autoencoders,
where the lack of transparency is a significant challenge,
particularly in critical fields like healthcare. Furthermore,
improving the scalability of computationally intensive
methods like One-Class SVM while maintaining accuracy
is another area that warrants exploration. Developing
hybrid approaches that combine the strengths of multiple
algorithms may also provide a path forward, allowing for
more robust and flexible outlier detection across varied
datasets. In conclusion, outlier detection remains a crucial
area of research and application, and as data complexity and

volume continue to grow, the development of more efficient,
scalable, and interpretable techniques will be essential for
addressing the challenges of the future.
• The Author claims no conflicts of interest.

5.4 Attachments
Python Codes:
Isolation Forest
python Copiar código
import numpy as np
import matplotlib. pyplot as plt
from sklearn. ensemble import Isolation Forest
Create a simple 2D dataset with normal data and some
outliers np. random. seed(42)
X = 0.3 * np. random. randn (100, 2)	 # normal data
X_outliers = np.random.uniform(low=-4, high=4, size=(20,
2))	 # outliers
X = np. r_[X + 2, X - 2, X_outliers]	 # combine normal data
and outliers
Fit the Isolation Forest model
clf = IsolationForest(contamination=0.1, random_state=42)
clf.fit(X)
y_pred = clf.predict(X)
Plot the data points and highlight outliers plt.
figure(figsize=(8, 6))
plt. title ("Isolation Forest Outlier Detection") # Normal data
plt.scatter(X[y_pred == 1][:, 0], X[y_pred == 1][:, 1],
color="blue", label="Normal Data")
Outliers
plt.scatter(X[y_pred == -1][:, 0], X[y_pred == -1][:, 1],
color="red", label="Outliers")
plt.legend(loc="upper left")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.grid(True)
Display the plot
plt.show()

5.5 One-Class SVM
python Copiar código
from sklearn.svm import OneClassSVM # Create the same
dataset for consistency np.random.seed(42)
X = 0.3 * np.random.randn(100, 2)	 # normal data
X_outliers = np.random.uniform(low=-4, high=4, size=(20,
2))	 # outliers X = np.r_[X + 2, X - 2, X_outliers]	#
combine normal data and outliers
Fit the One-Class SVM model
svm = OneClassSVM(kernel="rbf", gamma=0.1, nu=0.1) y_
pred_svm = svm.fit_predict(X)
Plot the data points and highlight outliers plt.
figure(figsize=(8, 6))
plt.title("One-Class SVM Outlier Detection")
Normal data
plt.scatter(X[y_pred_svm == 1][:, 0], X[y_pred_svm == 1][:,
1], color="blue", label="Normal Data")
Outliers
plt.scatter(X[y_pred_svm == -1][:, 0], X[y_pred_svm == -1][:,
1], color="red", label="Outliers")
plt.legend(loc="upper left")
plt.xlabel("Feature 1")

Volume - 2 Issue - 2

Page 9 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

plt.ylabel("Feature 2")
plt.grid(True)
Display the plot plt.
show()

5.6 Autoencoder
This implementation requires TensorFlow, so make sure you
install TensorFlow first:
bash
Copiar código
pip install tensorflow
Now the autoencoder code:
python Copiar código
from sklearn.preprocessing import MinMaxScaler import
tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # Create the same dataset
np.random.seed(42)
X = 0.3 * np.random.randn(100, 2)	 # normal data
X_outliers = np.random.uniform(low=-4, high=4, size=(20,
2)) # outliers
X = np.r_[X + 2, X - 2, X_outliers]	 # combine normal data
and outliers
Scaling the dataset to be between 0 and 1 for the
autoencoder scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X) #
Define the autoencoder structure
input_dim = X_scaled.shape[1]
encoding_dim = 2	 # compression to 2 features
Encoder
input_layer = tf.keras.layers.Input(shape=(input_dim,))
encoded = tf.keras.layers.Dense(encoding_dim,
activation='relu')(input_layer)
Decoder
decoded = tf.keras.layers.Dense(input_dim,
activation='sigmoid')(encoded)
Autoencoder model
autoencoder=tf .keras.models.Model(inputs=input_
layer,outputs=decoded) autoencoder.
compile(optimizer='adam', loss='mean_squared_error')
Train the autoencoder
autoencoder.fit(X_scaled, X_scaled, epochs=50, batch_
size=10, verbose=0)
Get reconstruction error for each data point
X_pred = autoencoder.predict(X_scaled)
reconstruction_error = np.mean(np.power(X_scaled - X_
pred, 2), axis=1)
Define a threshold for outliers based on the reconstruction
error
threshold = np.percentile(reconstruction_error, 95) #
outliers above the 95th percentile
y_pred_ae = (reconstruction_error > threshold).astype(int)
Plot the data points and highlight outliers
plt.figure(figsize=(8, 6))
plt.title("Autoencoder Outlier Detection")
Normal data
plt.scatter(X[y_pred_ae == 0][:, 0], X[y_pred_ae == 0][:, 1],
color="blue",
label="Normal Data")
Outliers

plt.scatter(X[y_pred_ae == 1][:, 0], X[y_pred_ae == 1][:, 1],
color="red",
label="Outliers")
plt.legend(loc="upper left")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.grid(True)
Display the plot
plt.show()
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
Generate a synthetic dataset with normal data and outliers
np.random.seed(42)
X = 0.3 * np.random.randn(100, 2) # normal data
X_outliers = np.random.uniform(low=-4, high=4, size=(20,
2)) # outliers X = np.r_[X + 2, X - 2, X_outliers] # combine
normal data and outliers
Scaling the dataset to be between 0 and 1 for the
autoencoder scaler = MinMaxScaler()
X_scaled = scaler. fit_transform(X) # Define the autoencoder
structure input_dim = X_scaled. shape[1]
encoding_dim = 2# compression to 2 features # Encoder
input_layer = tf.keras.layers.Input(shape=(input_dim,))
encoded = tf.keras.layers.Dense(encoding_dim,
activation='relu')(input_layer)
Decoder
decoded = tf.keras.layers.Dense(input_dim,
activation='sigmoid')(encoded)
Autoencoder model
autoencoder = tf.keras.models.Model(inputs=input_layer,
outputs=decoded) autoencoder.compile(optimizer='adam',
loss='mean_squared_error')
Train the autoencoder
autoencoder.fit(X_scaled, X_scaled, epochs=50, batch_
size=10, verbose=0)
Get reconstruction error for each data point X_pred =
autoencoder.predict(X_scaled)
reconstruction_error = np.mean(np.power(X_scaled - X_
pred, 2), axis=1)
Define a threshold for outliers based on the reconstruction
error
threshold = np.percentile(reconstruction_error, 95) #
outliers above the 95th percentile
y_pred_ae = (reconstruction_error > threshold).
astype(int) # Plot the data points and highlight outliers plt.
figure(figsize=(8, 6))
plt.title("Autoencoder Outlier Detection")
Normal data
plt.scatter(X[y_pred_ae == 0][:, 0], X[y_pred_ae == 0][:, 1],
color="blue", label="Normal Data")
Outliers
plt.scatter(X[y_pred_ae == 1][:, 0], X[y_pred_ae == 1][:, 1],
color="red", label="Outliers")
plt.legend(loc="upper left") plt.xlabel("Feature 1")
plt.ylabel("Feature 2") plt.grid(True)
Display the plot
plt.show()

Volume - 2 Issue - 2

Page 10 of 10

Copyright © Richard Murdoch MontgomeryJournal of Biomedical and Engineering Research

Citation: Montgomery, R. M. (2024). Techniques for Outlier Detection: A Comprehensive View. Journal of Biomedical and Engineering Research.2 (2), 1-10.

References
1.	 Aggarwal, C. C., Sathe, S., Aggarwal, C. C., & Sathe, S.

(2017). Which outlier detection algorithm should I use?.
Outlier Ensembles: An Introduction, 207-274.

2.	 Bolton, R. J., & Hand, D. J. (2002). Statistical fraud
detection: A review. Statistical science, 17(3), 235-255.

3.	 Aggarwal, C. C., & Aggarwal, C. C. (2017). An introduction
to outlier analysis (pp. 1-34). Springer International
Publishing.

4.	 Hodge, V., & Austin, J. (2004). A survey of outlier detection
methodologies. Artificial intelligence review, 22, 85-126.

5.	 García, S., Luengo, J., & Herrera, F. (2015). Data
preprocessing in data mining (Vol. 72, pp. 59-139).
Cham, Switzerland: Springer International Publishing.

6.	 Hubert, M., & Vandervieren, E. (2008). An adjusted
boxplot for skewed distributions. Computational
statistics & data analysis, 52(12), 5186-5201.

7.	 Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December).
Isolation forest. In 2008 eighth ieee international
conference on data mining (pp. 413-422). IEEE.

8.	 Hariri, S., Kind, M., & Brunner, R.J. (2019). Extended
isolation forest. IEEE Transactions on Knowledge and
Data Engineering, 33(4), 1479-1489.

9.	 Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., &
Williamson, R. C. (2001). Estimating the support of a
high-dimensional distribution. Neural computation,
13(7), 1443-1471.

10.	 Tax, D. M., & Duin, R. P. (2004). Support vector data

description. Machine learning, 54, 45-66.
11.	 Chalapathy, R., & Chawla, S. (2019). Deep learning

for anomaly detection: A survey. arXiv preprint
arXiv:1901.03407.

12.	 Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000,
May). LOF: identifying density-based local outliers. In
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data (pp. 93-104).

13.	 Eskin, E. (2000). Anomaly detection over noisy data
using learned probability distributions.

14.	 Campos, G. O., Zimek, A., Sander, J., Campello, R. J.,
Micenková, B., et al. (2016). On the evaluation of
unsupervised outlier detection: measures, datasets,
and an empirical study. Data mining and knowledge
discovery, 30, 891-927.

15.	 Manevitz, L. M., & Yousef, M. (2001). One-class SVMs for
document classification. Journal of machine Learning
research, 2(Dec), 139-154.

16.	 Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015,
April). Long short term memory networks for anomaly
detection in time series. In Esann (Vol. 2015, p. 89).

17.	 Rudin, C. (2019). Stop explaining black box machine
learning models for high stakes decisions and use
interpretable models instead. Nature machine
intelligence, 1(5), 206-215.

18.	 Tukey, J. W. (1977). Exploratory data analysis. Reading/
Addison-Wesley.

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=1.%09Aggarwal%2C+C.C.+%282015%29.+Outlier+Analysis+%282nd+ed.%29.+Springer.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=1.%09Aggarwal%2C+C.C.+%282015%29.+Outlier+Analysis+%282nd+ed.%29.+Springer.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=1.%09Aggarwal%2C+C.C.+%282015%29.+Outlier+Analysis+%282nd+ed.%29.+Springer.+&btnG=
https://projecteuclid.org/journals/statistical-science/volume-17/issue-3/Statistical-Fraud-Detection-A-Review/10.1214/ss/1042727940.pdf
https://projecteuclid.org/journals/statistical-science/volume-17/issue-3/Statistical-Fraud-Detection-A-Review/10.1214/ss/1042727940.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2013/292953
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2013/292953
https://onlinelibrary.wiley.com/doi/pdf/10.1155/2013/292953
https://eprints.whiterose.ac.uk/767/1/
https://eprints.whiterose.ac.uk/767/1/
http://pzs.dstu.dp.ua/DataMining/preprocessing/bibl/Data Preprocessing in Data Mining.pdf
http://pzs.dstu.dp.ua/DataMining/preprocessing/bibl/Data Preprocessing in Data Mining.pdf
http://pzs.dstu.dp.ua/DataMining/preprocessing/bibl/Data Preprocessing in Data Mining.pdf
https://foissam.wordpress.com/wp-content/uploads/2015/04/2007-adjusted-boxplot-hubertvandervieren.pdf
https://foissam.wordpress.com/wp-content/uploads/2015/04/2007-adjusted-boxplot-hubertvandervieren.pdf
https://foissam.wordpress.com/wp-content/uploads/2015/04/2007-adjusted-boxplot-hubertvandervieren.pdf
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest
D:\CME LIVE\JBER\JBER-24-25\Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended isolation forest. IEEE transactions on knowledge and data engineering, 33(4), 1479-1489
D:\CME LIVE\JBER\JBER-24-25\Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended isolation forest. IEEE transactions on knowledge and data engineering, 33(4), 1479-1489
D:\CME LIVE\JBER\JBER-24-25\Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended isolation forest. IEEE transactions on knowledge and data engineering, 33(4), 1479-1489
https://eprints.soton.ac.uk/259007/1/TRONECLA.PS
https://eprints.soton.ac.uk/259007/1/TRONECLA.PS
https://eprints.soton.ac.uk/259007/1/TRONECLA.PS
https://eprints.soton.ac.uk/259007/1/TRONECLA.PS
https://link.springer.com/content/pdf/10.1023/b:mach.0000008084.60811.49.pdf
https://link.springer.com/content/pdf/10.1023/b:mach.0000008084.60811.49.pdf
https://www.cse.fau.edu/~xqzhu/courses/cap6619/anomaly.pdf
https://www.cse.fau.edu/~xqzhu/courses/cap6619/anomaly.pdf
https://www.cse.fau.edu/~xqzhu/courses/cap6619/anomaly.pdf
https://dl.acm.org/doi/pdf/10.1145/342009.335388
https://dl.acm.org/doi/pdf/10.1145/342009.335388
https://dl.acm.org/doi/pdf/10.1145/342009.335388
https://dl.acm.org/doi/pdf/10.1145/342009.335388
https://academiccommons.columbia.edu/doi/10.7916/D8GT5TZ1/download
https://academiccommons.columbia.edu/doi/10.7916/D8GT5TZ1/download
https://eclass.hmu.gr/modules/document/file.php/MECH127/%CE%9C%CE%91%CE%98%CE%97%CE%9C%CE%91 04-05-06-07/Campos et al. - 2016 - On the evaluation of unsupervised outlier detectio.pdf
https://eclass.hmu.gr/modules/document/file.php/MECH127/%CE%9C%CE%91%CE%98%CE%97%CE%9C%CE%91 04-05-06-07/Campos et al. - 2016 - On the evaluation of unsupervised outlier detectio.pdf
https://eclass.hmu.gr/modules/document/file.php/MECH127/%CE%9C%CE%91%CE%98%CE%97%CE%9C%CE%91 04-05-06-07/Campos et al. - 2016 - On the evaluation of unsupervised outlier detectio.pdf
https://eclass.hmu.gr/modules/document/file.php/MECH127/%CE%9C%CE%91%CE%98%CE%97%CE%9C%CE%91 04-05-06-07/Campos et al. - 2016 - On the evaluation of unsupervised outlier detectio.pdf
https://eclass.hmu.gr/modules/document/file.php/MECH127/%CE%9C%CE%91%CE%98%CE%97%CE%9C%CE%91 04-05-06-07/Campos et al. - 2016 - On the evaluation of unsupervised outlier detectio.pdf
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf?ref=https://codemonkey.link
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf?ref=https://codemonkey.link
https://www.jmlr.org/papers/volume2/manevitz01a/manevitz01a.pdf?ref=https://codemonkey.link
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Optimizing-Long-Short-Term-Memory-Model-CNN-for-anomaly-detection/attachment/5f46fa6bce377e00016f45e8/AS%3A928935898542080%401598486985261/download/Long+Short+Term+Memory+Networks+for+Anomaly+Detection+in+Time+Series.pdf
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Optimizing-Long-Short-Term-Memory-Model-CNN-for-anomaly-detection/attachment/5f46fa6bce377e00016f45e8/AS%3A928935898542080%401598486985261/download/Long+Short+Term+Memory+Networks+for+Anomaly+Detection+in+Time+Series.pdf
https://www.researchgate.net/profile/Mohamed-Mourad-Lafifi/post/Optimizing-Long-Short-Term-Memory-Model-CNN-for-anomaly-detection/attachment/5f46fa6bce377e00016f45e8/AS%3A928935898542080%401598486985261/download/Long+Short+Term+Memory+Networks+for+Anomaly+Detection+in+Time+Series.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9122117/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tukey%2C+J.W.+%281977%29.+Exploratory+Data+Analysis.+Addison-Wesley.&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Tukey%2C+J.W.+%281977%29.+Exploratory+Data+Analysis.+Addison-Wesley.&btnG=

