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Abstract 
Background: As a popular optimization algorithm, gradient descent is more prone to converge at a local minimum rather than 
a global one since it is highly dependent on how initial values are instantiated and an iterative process of updates, reducing 
its efficiency for non-convex cost functions. This limitation is of utmost importance in domains such as medical physics, where 
there exist many treatment parameters that need to be optimized.

Purpose: We introduce the flat plane with maximum perpendicular distance method, a new optimization algorithm which 
identifies global minima robustly and efficiently in convex cost functions. This facilitates an initialization-free, non-iterative 
update method that serves as a complementary approach to classic methods.

Methods: 1D and 2D convex cost functions, with both global and relative minima, were tested using the flat plane method. 
Further, the approach was employed to determine optimal locations for radiation beams in a medical physics problem. Results 
were compared to existing gradient descent methods for effectiveness assessment.

Results: The flat plane algorithm found the global minimum in all the scenarios considered while the use of gradient descent 
would have failed to do so in many cases due to initialization issues. However, due to a less direct but highly parallelizable strategy 
(i.e. flat plane method), these techniques are certainly scalable for high-dimensional problems with potentially higher expense 
(e.g. dimensionality reduction, sampling, parallel computing).

Conclusion: In low-dimensional problems, the flat plane method provides a strong alternative to gradient descent for the 
global optimization problem. We are yet to adapt the method for high-dimensional applications but will work in that direction 
to increase its applicability over more complex optimization problems.
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1. Introduction
Optimization techniques are essential for solving many 
complex scientific and engineering problems, especially 
when identifying minima of cost functions for decision-
making. Gradient descent is a simple and computationally 
efficient method (in terms of number of operations) used 
in many applications. Nevertheless, such approaches are 
usually limited in that they depend on local knowledge 
and they are susceptible to getting stuck in local minima. 
This limitation becomes even more significant in problems 
where the optimization landscape follows a complex, high-
dimensional, and irregular geometry. We address this gap 
through a simple optimization method: the flat plane with 
maximum perpendicular distance. A flat plane is created 
on the maximum point of the function of cost; then the 
perpendicular distances of all points below is measured. 
This way, it does not depend on any initialization or iterative 
updates, therefore being resilient in finding global minima 
given that there may exist several local minima. To show 

the effectiveness of this approach, we evaluated it on both 
simulated convex functions in one and two dimensions, as 
well as a higher dimensional medical physics optimization 
problem to determine radiation beam placement. Such 
robustness and potential point to the use of such an approach 
for optimization in scientific and engineering domains.

2. Methods/Theory
2.1 Mathematical Proof: Flat Plane with Maximum Per-
pendicular Distance for Convex Problems
Definition and Assumptions
Let f(x) be a convex function defined over a domain 
A function is convex if for any                and λϵ[0,1], the 
following holds:

The global minimum of f(x), denoted as x*, satisfies f(x*)≤f(x) 
for all  
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The flat plane method defines a horizontal plane P at the 
maximum value of the functions, fman, and calculates the 
perpendicular distance d(x)= P-f(x) for all x. The global 
minimum is identified as the point where d(x) is maximized. 
For convex functions, the point with the maximum 
perpendicular distance below the plane P corresponds to the 
global minimum of the function. This result holds because of 
the properties of convexity and the monotonic relationship 
between f(x) and d(x).

2.1 Proof
Flat plane is defined as

The perpendicular distance from the flat plane to the 
function at point x is:
D(x) = P-f(x)
Since f(x)≤fmax for all x, d(x)≥0.

Maximization of the perpendicular distance by maximizing 
d(x) is equivalent to minimizing f(x), as:

At the global minimum x*, f(x*) is minimized, and d(x*) = 
P-f(x*) is maximized. 

Of convexity, f(x) has a unique global minimum x* if it is 
strictly convex. For non-strictly convex functions, the global 
minimum might not be unique, but all global minima have 
the same value f(x*), resulting in the same maximum d(x*). 
The flat plane P is constant across the domain. The maximum 
perpendicular distance occurs where f(x) is minimized, as 
the distance d(x) decreases monotonically with increase f(x).

2.3 Simulations of Cost Functions
The new optimization method explores two distinct 
approaches for locating the global minimum of convex 
cost functions: a gradient descent and the flat plane with 
maximum perpendicular distance method. These techniques 
are applied to both one-dimensional and two-dimensional 
convex cost functions, including scenarios with relative and 
global minima, offering a robust framework for optimization 
analysis. First a simple convex function, f(x) = x2, and a two-
hump convex function, which models a global minimum at 
one center and a relative minimum at another by combining 
two parabolic functions with varying scales and centers. For 
the simulations the two-hump convex functions had a shift 
of 5, a global minimum parabolic function had a scale of 0.5 
and the relative minimum parabolic function had a scale of 
1. For the 1-dimensional convex problem a parameter space 
from -10 to 10 composed of 500 points was utilized. For the 
2-dimensional convex problem a parameter space from 10 to 

10 with 100 points in x and y directions was utilized.

A non-convex multidimensional cost function was modeled 
with the following equations:

The cost functions surface parameter space was defined in a 
grid -5 to 5 in both x and y domain with 100 sampled points. 
The proposed flat plane with maximum perpendicular 
distance method was use to see how robust is this method is 
at finding the global minimum in nonconvex scenarios.

2.4 Radiation Beam Optimization
In radiation therapy, the goal is to minimize the dose to 
surrounding healthy tissue and maximize dose to tumor. 
The defined cost function that includes Dh which is the dose 
to heathy tissue, Dt dose to tumor, and a penalty term for 
exceeding a certain dose threshold in healthy tissue.

2.4.1 The Corresponding Cost Function is

Where x is the beam parameters (e.g positions, angles, 
intensity), wh, wt are the weights for healthy tissue and 
tumor doses, respectively. λ is the penalty weight for 
exceeding the healthy tissue dose threshold. The Dhthreshold 

was set to 0.5, initial weights wh and wt were set to 1. The 
initial beam positions was set to -5.

Dh(x) = exp(-((x-healthy center)2))
Dt(x) =exp(-((x-tumor center)2))

The tumor center and healthy center were set to 2 and -2 
respectively. This optimization problem was solved using 
standard gradient descent with learning rate of 0.1 and 
convergence tolerance of 1*10-5. To Update the beam 
parameters iteratively the following functions was used.

Where η is the learning rate.

For this optimization the gradient descent method was 
compared with the proposed new flat plane with maximum 
perpendicular distance method. For this method a flat plane 
at the maximum value of the cost function was created and 
the corresponding perpendicular distances from the plane to 
all the points in the cost function computed. Then the global 
minimum was identified as the point with the maximum 
perpendicular distance below the plane.

3. Results
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In radiation therapy, the goal is to minimize the dose to surrounding healthy tissue and maximize 99 
dose to tumor. The defined cost function that includes Dh which is the dose to heathy tissue, Dt 100 
dose to tumor, and a penalty term for exceeding a certain dose threshold in healthy tissue.101 

The corresponding cost function is:102 

C(x) = whDh(x)-wtDt(x)+𝜆𝜆max(0,Dh(x)-Dhthreshold

Where x is the beam parameters (e.g positions, angles, intensity), wh, wt are the weights for 104 
healthy tissue and tumor doses, respectively. 𝜆𝜆 is the penalty weight for exceeding the healthy 105 
tissue dose threshold. The Dh

)103 

threshold

Dh(x) = exp(-((x-healthy center)

was set to 0.5, initial weights wh and wt were set to 1. The 106 
initial beam positions was set to -5.107 

2

Dt(x) =exp(-((x-tumor center)

))108 
2

The tumor center and healthy center were set to 2 and -2 respectively. This optimization problem 110 
was solved using standard gradient descent with learning rate of 0.1 and convergence tolerance 111 
of 1*10

))109 

-5

X

. To Update the beam parameters iteratively the following functions was used:112 
k+1 = xk - 𝜂𝜂∆C(xk

Where 𝜂𝜂 is the learning rate.114 

)113 

For this optimization the gradient descent method was compared with the proposed new flat 115 
plane with maximum perpendicular distance method. For this method a flat plane at the 116 
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Results:120 

 4 

Radiation Beam Optimization98 

In radiation therapy, the goal is to minimize the dose to surrounding healthy tissue and maximize 99 
dose to tumor. The defined cost function that includes Dh which is the dose to heathy tissue, Dt 100 
dose to tumor, and a penalty term for exceeding a certain dose threshold in healthy tissue.101 

The corresponding cost function is:102 

C(x) = whDh(x)-wtDt(x)+𝜆𝜆max(0,Dh(x)-Dhthreshold

Where x is the beam parameters (e.g positions, angles, intensity), wh, wt are the weights for 104 
healthy tissue and tumor doses, respectively. 𝜆𝜆 is the penalty weight for exceeding the healthy 105 
tissue dose threshold. The Dh

)103 

threshold

Dh(x) = exp(-((x-healthy center)

was set to 0.5, initial weights wh and wt were set to 1. The 106 
initial beam positions was set to -5.107 

2

Dt(x) =exp(-((x-tumor center)

))108 
2

The tumor center and healthy center were set to 2 and -2 respectively. This optimization problem 110 
was solved using standard gradient descent with learning rate of 0.1 and convergence tolerance 111 
of 1*10

))109 
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X

. To Update the beam parameters iteratively the following functions was used:112 
k+1 = xk - 𝜂𝜂∆C(xk

Where 𝜂𝜂 is the learning rate.114 

)113 

For this optimization the gradient descent method was compared with the proposed new flat 115 
plane with maximum perpendicular distance method. For this method a flat plane at the 116 
maximum value of the cost function was created and the corresponding perpendicular distances 117 
from the plane to all the points in the cost function computed. Then the global minimum was 118 
identified as the point with the maximum perpendicular distance below the plane.119 

Results:120 
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121 

Figure 1: Simulated convex cost functions in A) 1 dimensional and B) two dimensional where122 
the proposed flat plane with maximum perpendicular distance method was used to find the global 123 
minimum specified by the red dot being the point found by the proposed method.124 

In the simulated 1-dimensional and 2-dimensional convex cost functions the proposed flat plane 125 
with maximum perpendicular distance method found efficiently the global minimum in both 126 
cases where the const function had a unique minimum and the cost functions where the cost 127 
function had a relative minimum and a global minimum.128 

Visualization is employed to compare the performance of the two methods. In one-dimensional 129 
scenarios, the cost function, flat plane, and identified minima are plotted for direct comparison. 130 
For two-dimensional functions, the cost surface and flat plane are displayed as 3D surfaces, 131 
highlighting the global minimum with a marker.132 

133 

134 

Figure 1: Simulated Convex Cost Functions in A) 1 Dimensional and B) Two Dimensional Where the Proposed Flat 
Plane with Maximum Perpendicular Distance Method was Used to Find the Global Minimum Specified by the Red 
Dot Being the Point Found by the Proposed Method

In the simulated 1-dimensional and 2-dimensional convex 
cost functions the proposed flat plane with maximum 
perpendicular distance method found efficiently the global 
minimum in both cases where the const function had a unique 
minimum and the cost functions where the cost function had 
a relative minimum and a global minimum. Visualization is 

employed to compare the performance of the two methods. 
In one-dimensional scenarios, the cost function, flat plane, 
and identified minima are plotted for direct comparison. 
For two-dimensional functions, the cost surface and flat 
plane are displayed as 3D surfaces, highlighting the global 
minimum with a marker.

 6 

135 

Figure 2: In a Multidimensional cost function with multiple local minima and a global 136 
maximum the plane-based method with maximum perpendicular distance below the plane 137 
successfully found the global minimum of the cost functions.138 

The proposed methods flat plane-based method was able to robustly locate the global minimum 139 
in a nonconvex example of a cost function with multiple local minima and a global minimum.140 
The cost surface and flat plane are displayed as 3D surfaces, highlighting the found global 141 
minimum with a marker.142 

143 

Figure 2: In A Multidimensional Cost Function with Multiple Local Minima and A Global Maximum the Plane-Based 
Method with Maximum Perpendicular Distance Below the Plane Successfully Found the Global Minimum of the Cost 
Functions

The proposed methods flat plane-based method was able to 
robustly locate the global minimum in a nonconvex example 
of a cost function with multiple local minima and a global 

minimum. The cost surface and flat plane are displayed as 
3D surfaces, highlighting the found global minimum with a 
marker.
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144 

Figure 3: Radiation Beam optimizations cost functions to minimize the dose to surrounding 145 
healthy tissue and maximize dose to tumor. Where optimized minimal solution from gradient 146 
descent is indicated by the green dot and the optimized minimal solution from the proposed flat 147 
plane with maximum perpendicular distance method is indicated by the red dot.148 

The medical physics tumor optimization script applies these optimization methods to a clinically 149 
relevant problem: optimizing radiation beam placement to minimize exposure to healthy tissues 150 
while maximizing the dose to the tumor. The cost function is defined as a combination of 151 
weighted healthy tissue and tumor doses, with an additional penalty term for exceeding a 152 
predefined healthy tissue dose threshold. The dose distributions for healthy tissues and tumors153 
are modeled as exponential decay functions, simulating Gaussian-like dose profiles centered on 154 
their respective regions.155 

In the Radiation Beam Optimization where the proposed flat plane method was compared to a 156 
standard gradient descent method. The proposed flat plane method was able to query all points in 157 
the cost functions at the same time and find the global minimum of the cost function in an158 
efficient manner. While the gradient descent method query adjacent points close to the chosen 159 
initial value and the gradient descent method was unsuccessful finding the global minimum of 160 
the cost function.161 

Figure 3: Radiation Beam Optimizations Cost Functions to Minimize the Dose to Surrounding Healthy Tissue and 
Maximize Dose to Tumor. Where Optimized Minimal Solution From Gradient Descent is Indicated by the Green Dot 
and the Optimized Minimal Solution From the Proposed Flat Plane with Maximum Perpendicular Distance Method 
is Indicated by the Red Dot

The medical physics tumor optimization script applies 
these optimization methods to a clinically relevant problem: 
optimizing radiation beam placement to minimize exposure 
to healthy tissues while maximizing the dose to the tumor. 
The cost function is defined as a combination of weighted 
healthy tissue and tumor doses, with an additional 
penalty term for exceeding a predefined healthy tissue 
dose threshold. The dose distributions for healthy tissues 
and tumors are modeled as exponential decay functions, 
simulating Gaussian-like dose profiles centered on their 
respective regions. In the Radiation Beam Optimization 
where the proposed flat plane method was compared to a 
standard gradient descent method. The proposed flat plane 
method was able to query all points in the cost functions 
at the same time and find the global minimum of the cost 
function in an efficient manner. While the gradient descent 
method query adjacent points close to the chosen initial 
value and the gradient descent method was unsuccessful 
finding the global minimum of the cost function.

4. Discussion
In the gradient descent method, the position is iteratively 
updated by moving in the direction of the negative gradient 
of the cost function. Gradients are computed numerically 
by evaluating the function at small perturbations from the 
current position [1]. The optimization process continues 
until the position updates fall below a specified tolerance, 
indicating convergence. This approach is efficient for 
navigating smooth cost landscapes and identifying minima 
within the local vicinity.

The flat plane method involves constructing a flat plane at 
the maximum value of the cost function and calculating the 
perpendicular distances from this plane to all points below 
it. The global minimum is identified as the point with the 
maximum perpendicular distance beneath the plane. This 
method is particularly effective in scenarios with multiple 
local minima, as it examines the entire cost function surface 
without being constrained to local regions. Gradient descent 
is used to iteratively adjust the beam position, with numerical 
gradients calculated via small perturbations. Convergence is 
determined by the magnitude of position updates, ensuring 
efficient identification of optimal beam placement. Similarly, 
the flat plane method calculates the distances from a flat 
plane to the cost function, identifying the global minimum 
as the point with the largest perpendicular distance. This 
highlights the importance of exploring different optimization 
algorithms and understanding how they fit a given problem. 
One iterative optimization approach is the gradient descent 
technique, which is just relying on the update in the direction 
of cost function as local minimum. But its performance highly 
relies on the initialization point, as well as choice of the 
learning rate and step size. If the initialization is poor or if we 
pick ineffective values for the learning rate than we can have 
slow convergence or inconsistencies, or we may get stuck 
local minimum and not be able to reach the global minimum 
[2,3]. It is computationally efficient for high-dimensional 
problems, but convergence may take more iterations and 
careful parameter tuning.

In contrast, the flat plane provides robustness in terms of 
finding the global minimum as it looks at all points in the 
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cost function. The solution strategy involves creating a plane 
at the highest value of the cost function and measuring the 
perpendicular distances from this plane down to all the 
points beneath it. Additionally, the approach is different from 
gradient descent, which involves convergence to local minima, 
as there is very little dependence on iterations of points 
or initialization points. This has a high computational 
cost though, as the distance has to be calculated for each 
point in the search space, and its cost grows rapidly with 
the dimensionality of the optimization problem. While 
this works well for 1D or 2D, its use for high-dimensional 
problems is not much as it is computationally difficult. It 
should be noted however that certain general adaptations 
can be made to efficiently apply the flat plane method on high-
dimensional optimization problems. First, dimensionality 
reduction methods like principal component analysis 
(PCA) may be used to project the optimization problem 
into a lower-dimensional subspace while maintaining 
most features of the cost function. This would cut down the 
distance calculations needed. Second, the cost function can 
be approximated by sampling strategies (e.g., Monte Carlo 
or Latin hypercube sampling) to find distances at discrete 
points instead of uniformly over the entire space [4]. Lastly, 
parallel computing and specifically GPU acceleration, can 
speed up distance computations, distributing the required 
calculations on several processors. These approaches enable 
the flat plane method to be scaled up to high-dimensional 
optimization problems without excessive computational 
cost.

5. Conclusion
Notably, the flat plane with maximum perpendicular 
distance method is highly demanded alternative approach 
method compared to optimization techniques to accurately 
search global minima in convex cost function. It showed 
clear benefits to gradient descent using 1D and 2D cost 
function simulations and its application to a medical physics 
problem, such as initialization independence and ability to 
escape from local minima. Due to the computational cost 
associated with the algorithm, it cannot be used for high 
dimensional problems, but there are suggested modifications 
to the method involving dimensionality reduction, sampling 
strategies or parallel methods that demonstrate good 
potential scalability. Not only does this work provide the 
theory behind the flat plane method, but it also emphasizes 

its usefulness in solving more challenging optimization 
problems, enabling future developments in computational 
optimization and multidisciplinary applications. Potential 
future work could involve improving the computational 
efficiency of the flat plane method in high dimensional 
problems.
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