
Volume - 2 Issue - 1

Page 1 of 6
Citation: Sowe, E. A., Bah, Y. A. (2025). Momentum Contrast for Unsupervised Visual Representation Learning. J Adv Civil Mech Eng, 2(1), 
1-6.

Journal of
Advances in Civil and Mechanical Engineering

Ebou A Sowe1* and Yunusa A Bah2

1School of Computer Science and Artificial Intelligence, Wuhan 
University of Technology, Wuhan, Hubei, 430070, China.

2Department of geography, Ohio University.

Momentum Contrast for Unsupervised Visual Representation 
Learning

Accepted:  2025 Feb 04Received:  2025 Jan 10

Corresponding Author: Ebou A Sowe, School of Computer Science and 
Artificial Intelligence, Wuhan University of Technology, Wuhan, Hubei, 
430070, China.

Published:  2025 Feb 10

Brief Report

Abstract
This brief report presents a novel unsupervised learning representation learning method called momentum contrast. Momentum 
contrast uses a contrastive learning technique to learn representations by comparing features of related yet dissimilar images 
for efficient feature extraction and unsupervised representation learning. Similar images are grouped together, and dissimilar 
images are placed far apart. The method builds upon previous works in contrastive learning but includes a momentum 
optimisation step to improve representation learning performance and generate better quality representations. Experiments 
on various datasets demonstrate that momentum contrast is able to learn high-quality representations, allowing us to directly 
use them to achieve competitive performance with fewer labelled examples.
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1. Introduction
Visual representation learning is a crucial component of 
many computer vision applications. In recent years, there 
has been a growing interest in unsupervised methods for 
learning visual representations. Unsupervised methods 
do not require labelled data, making them more versatile 
and applicable to a wider range of tasks. One unsupervised 
method that has gained popularity in recent years is 
Momentum Contrast (MoCo) for unsupervised visual 
representation learning. MoCo is a mechanism for building 
dynamic dictionaries for contrastive learning and can be 
used with various pretext tasks [1]. In this report, I will 
explore the concept of momentum contrast for unsupervised 
visual representation learning and its performance in 
comparison to other unsupervised learning methods. I will 
also explore some experimental results of MoCo, based on 
these experiments, I will drive some conclusions.

2. Background Study
Traditionally, supervised learning has been the dominant 
paradigm for training deep neural networks for visual 
recognition tasks. Contrastive learning (CL) is one of the 
prominent keystones of self-supervised learning. It fosters 
discriminability in the representation [2-6]. However, there 
are several limitations to this approach. Firstly, obtaining 
large labelled datasets can be expensive and time-consuming, 
especially for specialized tasks. Secondly, even with large 
labelled datasets, the resulting models may not generalize 
well to new, unseen images. Finally, supervised learning 
is not applicable to many domains where labelled data is 
scarce or unavailable. Unsupervised visual representation 

learning involves training a neural network to learn a set of 
features that can be used to represent images in a meaningful 
way. These features can then be used for a variety of tasks, 
such as image classification, object detection, and semantic 
segmentation. Unsupervised learning methods typically 
rely on data augmentation techniques to generate a large 
amount of diverse training data. The goal is to train a neural 
network to learn a set of features that are invariant to these 
augmentations. The core idea is to pull representations 
of “similar” images (referred to as positives) close while 
“dissimilar” images (negatives) are contrasted in feature 
space. Such methods implemented this idea using an instance 
discrimination pretext task where only transformed versions 
of the same images are taken as positives while augmented 
versions of other images are negatives [7].

3.  Methodology
3.1 Contrastive Learning as Dictionary Look-up 
Contrastive learning is a machine learning technique that 
aims to learn useful representations by contrasting pairs of 
examples. Contrastive learning can drive a variety of pretext 
tasks [1]. Even though contrastive learning has become 
prominent in recent years due to the success of large pre-
trained models in the fields of natural language processing 
(NLP) and computer vision (CV), the seminal idea dates back 
at least to the 1990s [8,9].  MoCo uses contrastive learning 
technique by making the dynamic dictionary large and 
consistence. Among the most successful of the recent self-
supervised approaches to learning visual representations, 
a subset of these termed ‘‘contrastive’’ learning methods 
have achieved the most success [10]. The negative samples 
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used for contrastive learning are obtained from a dynamic 
dictionary. Initially, the dictionary is empty. As the model 
learns, the encoder representations of the input data are 
stored in the dictionary. The dictionary is maintained using 
a queue-based mechanism, where new representations 
replace the oldest ones. This way, the dictionary captures a 
wide range of negative samples over time, providing diverse 

negative pairs for contrastive learning. By continuously 
updating the dictionary of negative samples and training 
the encoder using the contrastive loss, MoCo encourages 
the model to capture useful and semantically meaningful 
representations. The dynamic nature of the dictionary allows 
the model to adapt to changing data distributions and learn 
robust representations.

Figure 1: Overview of the Contrastive Representation Learning Framework. Its Components are: a Similarity and 
Dissimilarity Distribution to Sample Positive and Negative Keys for a Query, One or More Encoders and Transform 
Heads for Each Data Modality and a Contrastive Loss Function Evaluate a Batch of Positive and Negative Pairs [10]

3.2 Momentum Contrast
Momentum Contrast (MoCo) is an unsupervised learning 
method that was introduced in a paper by He et al. in 2019. 
The method is based on the idea of using a momentum 
encoder to generate a set of target features. During training, 
the momentum encoder is updated using a moving average 
of the weights of the online encoder. The online encoder is 
trained to generate features that are similar to the target 
features.

The MoCo method has several advantages over other 
unsupervised learning methods. One advantage is that it is 
computationally efficient, allowing for larger batch sizes and 
longer training times. Another advantage is that it is more 
effective at learning representations that are invariant to 
data augmentations. This is achieved by using a larger set 
of augmentations during training. MoCo can outperform 
its supervised pre-training counterpart in 7 detection/
segmentation tasks on PASCAL VOC, COCO, and other datasets, 
some- times surpassing it by large margins [1]. MoCo v1 has 
attracted significant attention by demonstrating superior 
performance over supervised pre-training counterparts 
in downstream tasks while making use of large negative 
samples, decoupling the need for batch size by introducing a 
dynamic dictionary [1,11].

3.3 Approach
The Momentum Contrast (MoCo) approach is a recent 
development in unsupervised representation learning that 
has shown state-of-the-art performance on a variety of 
visual recognition tasks. The MoCo approach is based on the 
principle of contrastive learning, which has been shown to 
be effective for unsupervised representation learning. The 

basic idea of contrastive learning is to learn representations 
that are invariant to certain transformations (e.g., rotations, 
translations, etc.) while maintaining discriminative power for 
similar images. The MoCo approach builds on the contrastive 
learning principle by introducing a momentum-based 
update rule that improves the stability and convergence of 
the training process. Specifically, the MoCo approach uses a 
memory bank to store a large number of negative examples 
that are used to compute contrastive losses during training. 
The memory bank is updated using a momentum-based 
update rule that averages the parameters of the current 
model with those of a slowly-updated "queue" model. 
This update rule helps to stabilize the training process by 
providing a more consistent source of negative examples.

3.4 Architecture
The MoCo architecture consists of two main components: an 
encoder network and a memory bank. The encoder network 
is a deep convolution neural network (CNN) that is trained 
to extract features from raw image data. The memory bank 
is a large matrix that stores a set of negative examples that 
are used to compute contrastive losses during training. 
The memory bank is updated using a momentum-based 
update rule that averages the parameters of the current 
model with those of a slowly-updated "queue" model. The 
encoder network consists of a series of convolutional 
layers followed by a global average pooling layer and a fully 
connected layer. The output of the fully connected layer is a 
vector of fixed length that represents the image features. The 
encoder network is trained using a contrastive loss function 
that encourages similar images to have similar feature 
representations, while dissimilar images have different 
feature representations.
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Figure 2: Momentum Contrast (MoCo) Trains a Visual Representation Encoder by Matching an Encoded Query q to 
a Dictionary of Encoded Keys Using a Contrastive Loss [1]. The Dictionary Keys {k0,k1,k2,...} are Defined On-The-Fly 
by a Set of Data Samples [1]

3.4.1 Dictionary as a Queue
Momentum contrast uses a dictionary queue encoded with 
keys, the queue is updated by adding the representation 
of the current image to the queue and removing the oldest 
representation. The dictionary acts as a "memory bank" that 
stores a history of feature representations. The queue is 
updated using a momentum-based update rule, which allows 
the model to maintain a smooth and stable representation 
of the feature space. During training, the images are split 
into two groups: a query group and a key group. The query 
group is used to compute a query feature representation, 
while the key group is used to compute a set of key feature 
representations. The query feature representation is then 
compared to the key feature representations stored in the 
dictionary using a contrastive loss function.

3.4.2 Momentum Update
Momentum update is a key component in Momentum 
Contrastive learning, a technique commonly used in 
self-supervised learning tasks such as image or video 
representation learning. It helps improve the stability and 
convergence speed of the learning process by introducing 
a momentum term during the update of the model's 
parameters. In MoCo, the momentum update is used to 
update the model's parameters based on the current gradient 
and the momentum term. 

 The Momentum Update can be Visualized as Follows
Initialize the model's parameters and momentum 
parameters.

 At Each Training Iteration
1. Compute the gradients of the loss function with respect to 
the parameters using the current mini-batch of data.
2. Update the momentum parameters using the momentum 
update equation: vt=α*v{t-1} +(1-α)*gt , where vt is the 
velocity term at time step t, α is the momentum coefficient, 
and gt is the gradient at time step t.
3. Update the model's parameters using the momentum 

parameters: θ{t+1} =θt+vt, where θ{t+1}  represents the updated 
parameters at time step t+1.

The momentum update equation calculates the velocity 
term by combining the previous velocity v{t-1}  and the 
current gradient gt. The momentum coefficient α determines 
the contribution of the previous velocity compared to the 
current gradient. A higher α value gives more weight to the 
previous velocity, resulting in a smoother and more stable 
update trajectory. The momentum update allows the model 
to accumulate information from previous gradients and 
helps the optimization process by maintaining a consistent 
direction of updates. This can help the model escape shallow 
local minima and converge faster to better representations. 
Keep in mind that while the momentum update is an 
essential component of MoCo, the specific implementation 
details and hyperparameters may vary depending on the 
exact architecture and training setup.

4.  Performance
MoCo has been shown to outperform other unsupervised 
learning methods on several benchmark datasets, including 
ImageNet, CIFAR-10, and CIFAR-100. MoCo achieves state-
of-the-art performance on these datasets without using any 
labelled data. MoCo has also been shown to be effective at 
learning representations for downstream tasks such as 
object detection and semantic segmentation.

4.1. Experiment Results
Momentum Contrast (MoCo) has shown impressive results 
in various experimental settings and benchmark datasets. 
MoCo's success can be attributed to its innovative contrastive 
learning framework, which encourages the model to learn 
discriminative representations by contrasting positive and 
negative samples. Positive samples in MoCo are augmented 
versions of the same image, while negative samples are 
drawn from a queue. This learning approach enables the 
model to pull similar samples closer together in the learned 
representation space while pushing dissimilar samples 
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apart. Here are some notable experimental results achieved 
by MoCo.

4.1.1 Image Net Classification
MoCo achieved state-of-the-art performance on the 
ImageNet-1K dataset, which consists of 1.28 million labelled 
images spanning 1,000 object categories. In the MoCo v2 
paper, the authors reported top-1 accuracy of 60.6% using 
ResNet-50, surpassing previous self-supervised methods 
and approaching the performance of supervised methods. In 
the MoCo v2 paper, the authors reported impressive results 
using the MoCo framework with the ResNet-50 architecture. 
They achieved a top-1 accuracy of 60.6% on the ImageNet-
1K dataset. This performance surpassed previous self-
supervised methods and approached the performance of 
supervised methods, which rely on human-labelled data.

This achievement is significant because it demonstrates the 
effectiveness of self-supervised learning approaches like 
MoCo in learning high-quality representations from large 
amounts of unlabelled data. By leveraging the power of 
contrastive learning and momentum encoders, MoCo was 
able to capture meaningful visual features that improved 
image classification accuracy. The ability of MoCo to achieve 
competitive results on the challenging ImageNet-1K dataset 
indicates that self-supervised learning has the potential 
to bridge the gap between supervised and unsupervised 
methods. It opens up possibilities for utilizing vast amounts 
of unannotated data to learn representations that approach 
the performance of supervised models, reducing the reliance 
on human-labelled data. These advancements in self-
supervised learning and the success of MoCo on ImageNet-
1K have contributed to the growing interest and exploration 
of self-supervised methods in various computer vision tasks 
and domains.

4.1.2 Transfer Learning
MoCo has demonstrated strong transfer learning 
capabilities. Pretrained models using MoCo representations 
have been successfully transferred to various downstream 
tasks such as object detection, semantic segmentation, and 
instance segmentation. By initializing the models with MoCo 
pretrained weights, significant performance gains have been 
observed compared to training from scratch.

4.1.3 Few-Shot Learning
MoCo has also shown promise in few-shot learning 
scenarios, where the goal is to recognize novel classes 
with limited labelled examples. By leveraging the learned 
representations, MoCo has been used as a feature extractor 
to achieve competitive performance on few-shot learning 
benchmarks like miniImageNet and tieredImageNet.

4.1.4 Robustness to Adversarial Attacks 
MoCo has demonstrated improved robustness to adversarial 
attacks compared to supervised learning. By training on 
large-scale unlabelled data, MoCo learns more generalizable 
representations that are less susceptible to adversarial 
perturbations. Adversarial attacks involve making intentional 
and often imperceptible modifications to input data in order 

to deceive a machine learning model. These perturbations 
can lead to incorrect predictions or misclassification. 
Adversarial attacks are a significant concern in various 
domains, including computer vision.

By training on large amounts of unlabelled data, MoCo 
learns to capture underlying patterns and structures in the 
data that are more resilient to adversarial perturbations. 
The robustness stems from the model's ability to generalize 
across a diverse set of samples and learn more invariant 
representations. This generalizability helps in reducing 
the vulnerability to adversarial attacks. Furthermore, the 
contrastive learning framework of MoCo, where positive 
samples are augmented versions of the same image and 
negative samples are drawn from a queue, encourages 
the model to pull similar samples closer together while 
pushing dissimilar samples apart. This contrastive objective 
promotes the learning of discriminative features that are 
less susceptible to adversarial perturbations.

4.1.5 Generalization 
MoCo has been shown to generalize well across different 
domains and datasets. For example, models pretrained on 
ImageNet using MoCo have been successfully transferred 
to domain-specific datasets such as Pascal VOC and COCO, 
achieving competitive performance. These results highlight 
the effectiveness of MoCo in learning meaningful and 
transferable image representations without relying on 
explicit labels, thereby enabling broader applications and 
reducing the need for large amounts of labelled data.

5. Conclusion
Momentum Contrast is an effective unsupervised learning 
method for visual representation learning. It has several 
advantages over other unsupervised learning methods, 
including computational efficiency and better invariance to 
data augmentations. MoCo has been shown to achieve state-
of-the-art performance on several benchmark datasets, 
making it a promising approach for unsupervised visual 
representation learning. Based on this, I drive the following 
conclusions.

Improved Self-Supervised Learning
MoCo has shown significant improvements over traditional 
self-supervised learning methods. By leveraging a 
momentum encoder, MoCo creates a dynamic and consistent 
queue of negative samples, enabling better learning of 
representations without the need for manual annotations. 
It addresses the limitations of traditional self-supervised 
learning approaches by introducing a momentum encoder 
and a dynamic queue of negative samples. Overall, MoCo's 
use of a momentum encoder and a dynamic queue of 
negative samples has led to significant improvements in self-
supervised learning. By leveraging these techniques, MoCo 
has demonstrated state-of-the-art performance on various 
benchmark datasets, surpassing previous methods that 
relied on manual annotations or supervised learning.

Used Contrastive Learning 
MoCo utilizes a contrastive learning framework, where 
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positive samples are augmented versions of the same image 
and negative samples are drawn from the queue. This 
encourages the model to pull positive samples together 
while pushing away negative samples, leading to more 
discriminative representations. He main idea behind MoCo is 
to encourage the model to pull positive samples (augmented 
versions of the same image) closer together in the embedding 
space while pushing negative samples (drawn from a queue 
of other images) further apart. This helps in learning more 
discriminative and meaningful representations.

 The Contrastive Learning Process in MoCo can be 
Summarized in the Following Stepsv
•	 Online Encoder and Target Encoder
MoCo maintains two encoders, the online encoder and the 
target encoder. The target encoder represents a slowly 
moving average of the online encoder's weights, which 
provides a consistent and stable set of representations.
•	 Positive Pair Augmentation
To create positive pairs, an image is randomly augmented 
multiple times. These augmented versions of the same 
image serve as positive samples. By applying different 
augmentations, the model learns to capture different views 
of the same underlying object or scene.
•	 Negative Sample Selection
Negative samples are drawn from a queue that stores 
representations of other images in the dataset. The queue 
acts as a source of negative samples that the model should be 
pushed away from. This helps in learning more robust and 
discriminative representations.
•	 Contrastive Loss
MoCo uses a contrastive loss function to train the model. 
The contrastive loss encourages the model to maximize 
the similarity between positive pairs while minimizing the 
similarity between positive and negative pairs. This loss 
formulation drives the model to learn representations that 
are more discriminative and generalize well to downstream 
tasks.

By training with the contrastive learning framework of 
MoCo, the model can learn powerful representations from 
unlabeled data, which can then be fine-tuned or transferred 
to supervised tasks with limited labeled data, leading to 
improved performance.

Transferability
MoCo has demonstrated excellent transferability of learned 
representations. Pretrained models using MoCo have been 
shown to achieve state-of-the-art performance on various 
downstream tasks such as image classification, object 
detection, and semantic segmentation. This indicates 
that the learned representations capture general visual 
concepts that can be transferred across different tasks. The 
pretrained models from MoCo provide a strong starting 
point for fine-tuning on specific supervised tasks with 
limited labelled data. By leveraging the knowledge acquired 
during the unsupervised pretraining phase, these models 
can effectively generalize and adapt to new tasks. This 
transfer learning approach saves significant computational 
resources and reduces the need for extensive labelled data. 

The success of MoCo and similar self-supervised learning 
methods highlights the potential of unsupervised learning 
in capturing meaningful representations that benefit a wide 
range of downstream applications.

Robustness to Label Noise
MoCo's self-supervised nature makes it robust to label 
noise in the training data. Since it does not rely on human 
annotations, MoCo can learn from large amounts of 
unlabelled data, which is often easier to obtain compared to 
accurately labelled data. This is particularly advantageous in 
scenarios where labelled data is scarce or expensive. Label 
noise refers to errors or inconsistencies in the annotations 
of the training data. In traditional supervised learning, these 
errors can negatively impact the model's performance as it 
learns from mislabelled examples. However, self-supervised 
learning methods like MoCo bypass the need for explicit 
labels by utilizing pretext tasks that create supervision 
signals from the data itself.

By leveraging unlabelled data, MoCo can learn powerful 
representations that are robust to label noise. The model 
learns to capture inherent patterns and structure in the data, 
allowing it to generalize well even in the presence of noisy or 
imperfect labels. This is particularly valuable in real-world 
scenarios where obtaining accurately labelled data can 
be challenging, such as in large-scale datasets or domains 
where expert annotations are scarce. Furthermore, the 
ability of MoCo to learn from unlabelled data makes it highly 
scalable. It can leverage vast amounts of readily available 
unlabelled data, such as images or text corpora, enabling 
the model to learn rich and meaningful representations 
without the need for manual annotations. This scalability 
makes MoCo an attractive approach in situations where 
obtaining labelled data is limited or costly. Overall, MoCo's 
self-supervised learning paradigm empowers the model to 
learn robust representations from unlabelled data, making 
it particularly advantageous in scenarios with label noise, 
scarce labelled data, or when access to accurately labelled 
data is challenging.

Promising Applications
The effectiveness of MoCo in visual representation learning 
opens up opportunities for various applications. It can 
be applied to domains such as computer vision, robotics, 
and autonomous systems, where understanding visual 
information is crucial for perception, decision-making, 
and action. In conclusion, Momentum Contrast (MoCo) has 
emerged as a powerful technique for visual representation 
learning. Its ability to learn from large-scale unlabeled data, 
robustness to label noise, and excellent transferability make 
it a valuable tool for advancing computer vision research and 
applications.
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