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Abstract
Objective: This study aims to predict ICD-10-CM codes for medical diagnoses from short diagnosis descriptions and 
compare two distinct.

Approaches: similarity search and using a generative model with few-shot learning.

Materials and Methods: The text-embedding-ada-002 model was used to embed textual descriptions of 2023 ICD-10-CM 
diagnosis codes, provided by the Centers provided for Medicare & Medicaid Services. GPT-4 used few-shot learning. Both 
models underwent performance testing on 666 data points from the eICU Collaborative Research Database.

Results: The text-embedding-ada-002 model successfully identified the relevant code from a set of similar codes 80% of 
the time, while GPT-4 achieved a 50 % accuracy in predicting the correct code.

Discussion: The work implies that text-embedding-ada-002 could automate medical coding better than GPT-4, 
highlighting potential limitations of generative language models for complicated tasks like this.

Conclusion: The research shows that text-embedding-ada-002 outperforms GPT4 in medical coding, highlighting 
embedding models’ usefulness in the domain of medical coding.
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1. Introduction
The International Classification of Disease (ICD), 
established by the World Health Organization (WHO) is 
the universally recognized and standardized system for 
medical coding worldwide. It provides a comprehensive 
framework for categorizing diseases, health conditions, and 
related information, facilitating accurate and consistent 
documentation, data sharing, and research across the 
global healthcare community. It is employed by healthcare 
providers worldwide to categorize diseases and conditions. 
Medical coding involves the assignment of ICD codes like 
ICD-10-CM codes to classify diagnoses and reasons for visits 
in all healthcare settings, is essential for guiding clinical 
decisions, tracking diseases, and impacting healthcare 
financing [1, 2]. Medical coding is traditionally manual, with 
coders translating physicians’ notes into the appropriate ICD 
codes while adhering to complex guidelines. In this process, 
highly trained medical coders assign ICD (International 

Classification of Diseases) codes to patient encounters 
based on the information found in clinicians’ notes, however, 
manual ICD coding is time-consuming and error-prone, 
making the quality and productivity of coding a matter of 
concern in practice. The process is error-prone [3–5] due to 
the complexity of medical language and coding guidelines. 
Coders often need help with subtle differences between 
disease subtypes, leading to misclassification. Physicians’ use 
of abbreviations and synonyms which adds to the ambiguity 
[6]. Making this a non-trivial task for humans. Furthermore, 
inexperienced coders may incorrectly assign separate codes 
to related diagnoses, a problem called unbundling, which 
can result in costly mistakes [7]. These coding inaccuracies 
have substantial financial implications, contributing to an 
estimated annual expenditure of $25 billion in the United 
States, as reported by Lang et al. [8] Farkas et al. [9]. With 
recent AI technologies (e.g., NLP), automated medical coding 
has the potential to support clinical coders better.
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Automated Medical Coding (AMC) is the idea that artificial 
intelligence can automate clinical coding. In recent years, 
there has been a significant increase in AMCrelated work 
[10–17] through deep learning. Although research in this 
field has grown, this problem is far from being solved [18, 19]. 
For instance, automated coding remains a complex problem 
because extracting knowledge from patients’ clinical records 
is challenging. These records are not uniformly structured, 
the medical field’s terminologies can be complicated for 
non-professionals to comprehend, and physicians often have 
different ways of describing symptoms, leading to various 
descriptions for the same disease.

Embeddings in Natural Language Processing (NLP) represent 
words as realvalued vectors [20]. These vectors can capture 
the meaning of words in such a way that words closer together 
in the vector space are expected to have similar meanings. In 
clinical NLP, embeddings are helpful for analyzing medical 
data and texts, aiding decision-making and research [21]. 
The use of word embeddings in Automated Medical Coding 
(AMC) systems is increasingly being explored as it has the 
potential to bridge the gap between the informal language 
of medical diagnoses and the formal language of ICD code 
descriptions [22-27]. For instance, CAIC uses cross-textual 
attention to match parts of medical notes with ICD codes 
[15]. While GatedCNN-NCI creates a network linking every 
aspect of medical notes to ICD codes [19]. BiCapsNetLE 
integrates ICD code descriptions into word embeddings of 
clinical notes, enhancing alignment [28]. DLAC employs a 
description-based label attention mechanism, focusing on 
the correlation between the descriptions of ICD codes and 
the features of medical notes [29]. ICDBigBird uses a Graph 
Convolutional Network (GCN) and ehances the ICD code 
emebddings by using their relational structure.

Even though, there is a growing body of work for utilizing 
embeddings in clinical coding, there has been a growing 

interest of what a Large Language Model (LLM) can do 
in the health sector due to their ability of understanding, 
generating, and predicting new content.

As the interest in Large Language Models (LLMs) continues 
to grow in the health sector, as evidenced by multiple recent 
studies studies, our objective is to compare the effectiveness 
of two distinct approaches to predict ICD-10-CM codes 
accurately [30-34]. We will compare the effectiveness of 
similarity search, for which we will be using text-embedding-
ada-002, and an LLM, in which we will be using GPT-4 from 
OpenAI to predict ICD-10-CM codes [35].

2. Materials and Methods
Data Collection: We utilized the diagnosis strings (patient 
diagnoses) from the eICU Collaborative Research Database, 
which contains data from different critical care units (CCUs) 
across the United States from patients who were admitted 
between 2014 and 2015 [36]. We selected a subset of 666 
patients from the total dataset of 2,710,672 patients. This 
sample size represents a 99% confidence level with a 
5% margin of error [37]. We utilize each patient’s current 
diagnoses from the data we collected, which comprise of the 
diagnosis string and the corresponding ICD-10 CM codes. 
The diagnosis strings will serve as inputs to the models, with 
the ICD-10-CM codes as the outputs. The ICD-10-CM codes 
will be used for comparison to assess the model’s accuracy 
in prediction. The diagnosis strings in the eICU database are 
organized in a tiered system. For example, “neurologic—
trauma - CNS—intracranial injury—with subarachnoid 
hemorrhage” shows this: it starts with a general category 
“neurologic”, goes into a more specific “trauma - CNS”, then 
to “intracranial injury”, and ends with a detailed aspect 
“with subarachnoid hemorrhage”. Each part of the string 
represents a deeper level of diagnosis detail. Table 1, shows 
sample diagnosis strings and their corresponding ICD-10 CM 
codes from the dataset we are using.

Table 1 eICU Sample Data: Diagnosis & ICD-10 Code

Diagnosis ICD-10 CM Code
burns/trauma|dermatology|cellulitis L03.90

burns/trauma|trauma - chest|lung trauma S27.30
hematology|coagulation disorders|DVT I80.9

2.2 Model Selection

We utilize OpenAI’s text-embedding-ada-002 model 1, as it surpasses previous models

in text search and text similarity from OpenAI. We evaluate the effectiveness of the

embedding model relative to the latest version of GPT-4, which we operated using the

Microsoft OpenAI Azure Service. Our selection of only the text-embedding-ada-002

model and GPT-4 was due to the constraints set by the terms and conditions of using

the PhysioNet dataset 2.

2.3 text-embedding-ada-002

In this work, we utilized the text-embedding-ada-002 model to embed the textual

descriptions of 2023 ICD-10-CM diagnosis codes 3 , as provided by the Centers for

Medicare & Medicaid Services source. After generating these embeddings, our primary

objective was to evaluate their performance. To do so, we used the dataset of diagnosis

strings obtained from the eICU dataset.

To assess the accuracy of matching medical diagnoses (diagnosis strings) with

their respective ICD-10-CM codes, we inputted these diagnosis strings into the text-

embedding-ada-002 model. Our objective was to determine if this single model could

accurately return the closest ICD-10-CM code based on the ICD-10 description. Addi-

tionally, the model returned the top four ICD-10-CM codes for each medical condition.

We selected four as the default value for similarity searches by vector, because this is

specified as the standard setting in the LangChain documentation 4. The workflow of

1https://openai.com/blog/new-and-improved-embedding-model
2https://physionet.org/news/post/415
3https://www.cms.gov/medicare/coding-billing/icd-10-codes
4https://api.python.langchain.com/
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Table 1: eICU Sample Data: Diagnosis & ICD-10 Code.

Model Selection: We utilize OpenAI’s text-embedding-
ada-002 model, as it surpasses previous models in text 
search and text similarity from OpenAI [1]. We evaluate 
the effectiveness of the embedding model relative to the 
latest version of GPT-4, which we operated using the 
Microsoft OpenAI Azure Service. Our selection of only the 
text-embedding-ada-002 model and GPT-4 was due to the 
constraints set by the terms and conditions of using the 
PhysioNet dataset [1].

Text-Embedding-Ada-002: In this work, we utilized the 
text-embedding-ada-002 model to embed the textual 
descriptions of 2023 ICD-10-CM diagnosis codes, as provided 
by the Centers for Medicare & Medicaid Services source [3]. 

After generating these embeddings, our primary objective 
was to evaluate their performance. To do so, we used the 
dataset of diagnosis strings obtained from the eICU dataset.

To assess the accuracy of matching medical diagnoses 
(diagnosis strings) with their respective ICD-10-CM codes, 
we inputted these diagnosis strings into the textembedding-
ada-002 model. Our objective was to determine if this single 
model could accurately return the closest ICD-10-CM code 
based on the ICD-10 description. Additionally, the model 
returned the top four ICD-10-CM codes for each medical 
condition. We selected four as the default value for similarity 
searches by vector, because this is specified as the standard 
setting in the LangChain documentation [4]. The workflow of 
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how the embeddings function is clearly illustrated in Figure 1 
The embeddings are generated and then stored in the vector 
database. These embeddings correspond to the textual 
descriptions of the 2023 ICD-10-CM diagnosis codes. When 
a user submits a query as a medical diagnosis (referred to as 

the diagnosis string), the system searches the database for 
embeddings similar to the embedding of the query. Finally, 
the system retrieves the closest ICD-10-CM codes based 
on the similarity between embeddings, providing relevant 
matches for the medical diagnosis.

how the embeddings function is clearly illustrated in Figure 1 The embeddings are

generated and then stored in the vector database. These embeddings correspond to

the textual descriptions of the 2023 ICD-10-CM diagnosis codes. When a user sub-

mits a query as a medical diagnosis (referred to as the diagnosis string), the system

searches the database for embeddings similar to the embedding of the query. Finally,

the system retrieves the closest ICD-10-CM codes based on the similarity between

embeddings, providing relevant matches for the medical diagnosis.

Embedding Generation
Vector Database

Retrieve Similar Embedding Matches

Diagnosis string

Return  Top 4 Closet ICD-10 CM
Codes

Interface

Fig. 1 Visualizing Automated ICD-10 Code Prediction Process: Streamlining Medical Coding

2.4 GPT-4

We prompted GPT-4 with few-shot prompting to assess its capability in medical

coding. Few shot prompting [38] was selected because large language models have

notable zero-shot abilities, but they tend to perform poorly in complex tasks when

using zero-shot settings. Few-shot prompting serves as a method to enable in-context

learning, where demonstrations in the prompt help direct the model toward better

performance. Figure 2 contains the prompt we used. The examples for the prompt

were acquired by clustering the diagnosis strings. We used K-means clustering to

group our diagnosis strings and found that 8 clusters worked best. The ideal number

of eight clusters was determined using the elbow method, which evaluates the within-

cluster sum of squares across a range of 1 to 20 possible clusters; the ‘elbow’ point,

where there is a significant decrease in within-cluster dissimilarity, indicates the most

suitable number of clusters. We picked a range between 1 and 20 as it is a manageable

number of clusters that can be effectively interpreted and analyzed. From each cluster,
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Figure 1: Visualizing Automated ICD-10 Code Prediction Process: Streamlining Medical Coding.

Figure 2: GPT-4 Prompt.

GPT-4: We prompted GPT-4 with few-shot prompting to 
assess its capability in medical coding. Few shots prompting 
was selected because large language models have notable 
zero-shot abilities, but they tend to perform poorly in 
complex tasks when using zero-shot settings [38]. Few-shot 
prompting serves as a method to enable in-context learning, 
where demonstrations in the prompt help direct the model 
toward better performance. Figure 2 contains the prompt 
we used. The examples for the prompt were acquired by 
clustering the diagnosis strings. We used K-means clustering 
to group our diagnosis strings and found that 8 clusters 
worked best. 

The ideal number of eight clusters was determined using 
the elbow method, which evaluates the withincluster sum of 
squares across a range of 1 to 20 possible clusters; the ‘elbow’ 
point, where there is a significant decrease in within-cluster 
dissimilarity, indicates the most suitable number of clusters. 
We picked a range between 1 and 20 as it is a manageable 
number of clusters that can be effectively interpreted and 
analyzed. From each cluster, we selected the diagnosis 
closest to the cluster’s center in the vector space as the most 
representative example of the cluster; these representative 
examples were then used in the few-shot prompt.

To optimize GPT-4 for medical coding, we experimented with 
different temperature settings (0.1, 0.5, 0.9) on the sample 
of 666 diagnoses collected for this study, representing a 
99% confidence interval and a 5% margin of error. Our 
results showed that a temperature of 0.1 was effective, as 
it balanced the model’s creative outputs and the need for 

accurate, deterministic responses in medical coding.

Role: Medical Coder Objective: 
Your task is to accurately assign the correct ICD-10-CM code 
for each patient’s condition based on their medical diagnosis.

Examples:
• Description: neurologic disorders of vasculature stroke
• Output: I67.8
• Description: infectious diseases systemic/other infections 
sepsis
• Output: A41.9
• Description: pulmonary disorders of vasculature 
pulmonary embolism
• Output: I26.99
• Description: burns/trauma|trauma - CNS|intracranial 
injury
• Output: S06.9
• Description: cardiovascular ventricular disorders 
congestive heart failure
• Output: I50.9
• Description: gastrointestinal GI bleeding / PUD|peptic 
ulcer disease
• Output: K27.9
• Description: pulmonary respiratory failure acute 
respiratory failure
• Output: J96.00
• Description: renal disorder of kidney acute renal failure
• Output: N17.9
• Description: ${input text} $ Output.

Embedding Generation 
Vector Database 

Retrieve Similar Embedding Matches 

Diagnosis string 

Return  Top 4 Closet ICD-10 CM 
Codes 

Interface 
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3. Results
The text-embedding-ada-002 model achieved an 80% 
accuracy rate in identifying the correct ICD-10-CM codes 
from the retrieved similar codes, outperforming GPT-4, which 
achieved a 50% accuracy rate in the same task. This suggests 
that embedding models, like text-embedding-ada-002, can 
offer improved accuracy and efficiency in medical coding.

4. Discussion
In this study, we discovered that embedding models 
like text-embedding-ada-002 could potentially be more 
effective than GPT-4, a large language model. The critical 
advantage of embeddings lies in their focus on the semantic 
similarity of words, an aspect vital for accurately matching 
medical diagnoses with ICD codes, as this technique allows 
for a more precise understanding and interpretation of 
medical terminology, which is crucial in medical coding. 
Embeddings analyze the context and meaning of words more 
concentratedly, leading to higher accuracy in identifying 
relevant codes.

Moreover, when assessing the feasibility of using embedding 
models like textembedding-ada-002, it becomes evident that 
these models align well with medical coding requirements. 
They offer a more focused approach, potentially assisting 
in accurately linking diagnoses with the correct ICD codes, 
which demands precision. It suggests that embedding 
models better fit medical coding tasks compared to more 
generative models like GPT-4, which handle a broader range 
of data.

In contrast, GPT-4 processes a wide range of data and 
contexts. While this versatility is helpful for general tasks, it 
can lead to less precision in specialized areas like medical 
coding, where specific terminology and accurate coding are 
essential. GPT-4’s handling of vast information might make 
it more challenging to differentiate between similar medical 
terms and codes, potentially affecting its performance in this 
field.

5. Conclusion
The results indicate that embedding models like text-
embedding-ada-002 appear more suitable for medical 
coding tasks than large language models like GPT-4. This 
result could be primarily due to text-embedding-ada-002’s 
focused approach on the semantic similarity of words, which 
has led to an 80% accuracy in identifying ICD10-CM codes, 
significantly surpassing GPT-4’s 50% accuracy. Embedding 
models like text-embedding-ada-002 are a more practical 
choice for medical coding due to their precision in analyzing 
and understanding medical terminology. On the other hand, 
GPT-4, although capable of broad data processing, may prove 
less effective in specialized fields such as medical coding, 
where accuracy and specific terminology are crucial. Hence, 
for precision-dependent tasks such as medical coding, 
embedding models like text-embedding-ada-002 could offer 
a more suitable solution than generative models like GPT-4.
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