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Abstract 
The reaction of oxidation of single-crystalline germanium in water vapor Ge+H2O=GeO+H2 is investigated. In this reaction 
(Ge+H2O=GeO+H2) the volatile germanium monoxide is formed. The kinetics of the reaction is studied using the microgravimetric 
method. GeO does not remain on the germanium surface and evaporates immediately. On a silicon substrate located in the 
cold zone of the reactor, the oxide disproportionate into germanium and its dioxide: 2GeO=Ge+GeO2. The infrared, electronic 
and Auger spectra of the (Ge+GeO2) films were investigated. The capacitance-voltage characteristics were also measured. Film 
(Ge+GeO2) creates a good interface with silicon. The breakdown voltage of the film under study reaches ≅2∙107 V/cm, which 
determines the prospects for its use in semiconductor devices for interlayer isolation.

Keywords: Germanium monoxide, Water vapor, Germanium suboxide film

1. Introduction
Oxide is grown on semiconductors to create MIS (metal-
insulator-semiconductor) structures. Thermal oxidation is 
widely used for silicon. Thermal SiO2 creates a high-quality 
interface with Si and other semiconductors. Germanium 
is similar to silicon in physical and chemical properties, 
surpassing it in charge carrier mobility. But its oxide layers 
do not have the qualities of silicon oxide. Nevertheless, 
germanium is widely used in microelectronics; it is used as 
an optical filter for IR radiation, a mirror resonator in lasers, 
a monochromator in diffractometers, memristors etc. [1-8].

When heated strongly, germanium reacts with oxygen to 
form oxides: momoxide GeО (2Ge+O2=2GeO) or dioxide 
GeO2 (Ge+O2=GeO2). These compounds are also formed 
by interaction of germanium with water vapor (does 
not react with liquid water) [9-11]: Ge+H2O=GeO+H2, 
Ge+2H2O=GeO2+2H2.

Germanium monoxide is used in science and technology to 
no lesser extent than elemental germanium itself [12-29]. 
This paper examines the interaction of single-crystalline 
germanium with water vapor during the formation of 
monoxide and films obtained by evaporation of GeO. 

1.1. Experimental
In the experiments, we used plates of single-crystalline 
germanium of n-type conductivity and with concentration 
of charge carriers ≅2∙1014cm-3. They were successively 
degreased in boiling toluene, dried in the air, etched in a 

liquid etchant HF-HNO3-CH3COOH = 1:15:1 for (4-5) min 
and, washed in running distilled water, followed by drying. 
The inlet pressure of water vapor was ≅2.64 kPa (saturated 
pressure of water vapor at 22 oC), which increased with the 
reaction temperature.

We studied the kinetics of the reaction using the 
microgravimetric method: the weighing of the change of 
the sample (sensitivity ≅10-6g). the monoxide vaporized 
from the germanium surface was applied to the silicon 
plate in the "cold" (300-350 oC) zone of the reactor. The 
germanium “suboxide” film obtained on the substrate was 
studied by infrared spectra (spectrophotometer UR-20), 
electronic absorption spectra (spectrophotometer SF-26-A), 
Auger-spectroscopic method (spectrometer LAS-2000) and 
measurement of capacitance - voltage (C-V) dependence 
(IPPM – 2 setup). To determine of charge built in dielectric 
(NFB) and flat-band voltage (VFB), the high-frequency CV-
characteristic method was used. The breakdown voltage of 
the films was measured using the AMI-60 apparatus.

2. Results and Discussion
Monoxide formed in the water vapor does not remain on the 
germanium surface and evaporates immediately. A study of 
the process by microgravimetry showed a linear decrease in 
the sample mass (Fig.1). According to dependencies m - t, 
it is possible to determine the evaporation rates of GeO at 
different temperatures, which is shown in Fig. 2 in Arrhenius 
coordinates. The experimental points strictly lie on a straight 
line and give the value of the activation energy ≅48 kcal/
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mol, which is in satisfactory agreement with the literature 
data for the heat of evaporation of GeO (45-58) kcal/mol in 

different inert areas (Ar, N2, vacuum) [30,31]. 

Figure 1: Mass loss of germanium sample in water vapor at (1) 500, (2) 550, (3) 600, (4) 650 and (5) 700oC.

Figure 2: Temperature dependence of GeO evapioration in Arrheniuss coordinates in water vapor (o) and vacuum 
according to our data (∆).

The vaporized GeO was applied to the silicon plate and 
infrared (IR), electron absorption and Auger spectra were 
studied. The volt-farad (C – V) characteristics were also 
investigated.

For films obtained in the temperature range of (500-700) °C, 
the optical properties change little. Thus, the maximum of 
the IR absorption spectrum is located in the region of (880-
890) cm-1, which is typical for GeO2 [32,33], and the optical 
band gap (Eopt) (see below) lies within the limits of (1.2-1.3) 
eV, which is already approaching Eopt for amorphous 

germanium [34,35]. 

Comparison of the IR spectrum and the band gap width 
suggests a two-phase structure of the films. Direct evidence of 
this is the Auger spectrum (Fig.3, curve 1). The Auger spectra 
of amorphous GeO2 (curve 2) and Ge (curve 3) films are also 
shown there. In the film under study, the peak of the LMM 
transition of germanium is split into two components with 
energies of 1140 and 1147 eV. The first corresponds to the 
Auger transition of germanium atoms in Ge(O4) tetrahedra 
in GeO2, and the second - in Ge (Ge4) tetrahedra. (*)

2. Experimental

In the experiments, we used plates of single-crystalline germanium of n-type conductivity and with
concentration of charge carriers ≅2∙1014cm-3. They were successively degreased in boiling toluene, 
dried in the air, etched in a liquid etchant HF-HNO3-CH3COOH = 1:15:1 for (4-5) min and, washed 
in running distilled water, followed by drying. The inlet pressure of water vapor was ≅2.64 kPa 
(saturated pressure of water vapor at 22o

We studied the kinetics of the reaction using the microgravimetric method: the weighing of the 
change of the sample (sensitivity ≅10

C), which increased with the reaction temperature.

-6

The monoxide vaporized from the germanium surface was applied to the silicon plate in the "cold" 
(300-350

g).

oC) zone of the reactor. The germanium “suboxide” film obtained on the substrate was 
studied by  infrared  spectra (spectrophotometer   UR-20),  electronic absorption spectra 
(spectrophotometer SF-26-A), Auger-spectroscopic method (spectrometer LAS-2000) and 
measurement of capacitance - voltage (C-V) dependence (IPPM – 2 setup). To determine of charge  
built  in dielectric (NFB) and flat-band voltage (VFB

                                                                                                                                                           
3. Results and Discussion

), the high-frequency CV-characteristic method 
was used. The breakdown voltage of the films was measured using the AMI-60 apparatus.

Monoxide formed in the water vapor does not remain on the germanium surface and evaporates 
immediately. A study of the process by microgravimetry showed a linear decrease in the sample 
mass (Fig.1). According to dependencies m - t, it is possible to determine the evaporation rates of 
GeO at different temperatures , which is shown in Fig. 2 in Arrhenius coordinates. The 
experimental points strictly lie on a straight line and give the value of the activation energy ≅48 
kcal/mol, which is in satisfactory agreement with the literature data for the heat of evaporation of 
GeO (45-58) kcal/mol in different inert areas (Ar, N2, vacuum) [30,31]. 

Figure 1: Mass loss of germanium sample in water vapor at (1) 500, (2) 550, (3) 600, (4) 650 and (5) 
700oC.

Figure 2: Temperature dependence of GeO evapioration in Arrheniuss coordinates in water vapor (o) 
and vacuum according to our data (∆).

The vaporized GeO was applied to the silicon plate and infrared (IR), electron absorption and Auger 
spectra were studied. The volt-farad (C – V) characteristics were also investigated.

For films obtained in the temperature range of (500-700)°C, the optical properties change little. 
Thus, the maximum of the IR absorption spectrum is located in the region of (880-890) cm-1, which 
is typical for GeO2 [32,33], and the optical band gap (Eopt) (see below) lies within the limits of (1.2-
1.3) eV, which is already approaching Eopt

Comparison of the IR spectrum and the band gap width suggests a two-phase structure of the films. 
Direct evidence of this is the Auger spectrum (Fig.3, curve 1). The Auger spectra of amorphous 
GeO

for amorphous germanium [34,35].

2 (curve 2) and Ge (curve 3) films are also shown there. In the film under study, the peak of the 
LMM transition of germanium is split into two components with energies of 1140 and 1147 eV. 
The first corresponds to the Auger transition of germanium atoms in Ge(O4) tetrahedra in GeO2,
and the second - in Ge(Ge4) tetrahedra.(*)

Figure 2: Temperature dependence of GeO evapioration in Arrheniuss coordinates in water vapor (o) 
and vacuum according to our data (∆).

The vaporized GeO was applied to the silicon plate and infrared (IR), electron absorption and Auger 
spectra were studied. The volt-farad (C – V) characteristics were also investigated.
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Figure 3: Auger-spectrum of (1) Ge, (2) GeO2 and (3) Ge+GeO2 film.

Thus, it should be concluded that when deposited on the 
substrate, GeO disproportionate: 2GeO = Ge +GeO2. It should 
be noted that this two-phase nature is not a trivial fact - 

GeO2 films obtained by magnetron and triode sputtering of 
germanium are single-phase. (**)
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by magnetron and triode sputtering of germanium are single-phase.(**)
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Figure 4 shows the electronic absorption spectrum of the film obtained at 700°C in the coordinates 
absorption coefficient (α) - photon energy (hν, h - Plank's constant, ν - frequency), (αhν)1/2 - hν and 
lnα - hν. To describe the presented dependencies, one can use known equations: αhν=B(hν-Eopt)2

[36,37]  and  α=α0exp(hν/E0) [38-40], where B is a coefficient inversely proportional to the density 
of states near the conduction band and valence band, α0 is the pre-exponent and E0

The properties of the interface of the obtained films with silicon were investigated. Fig. 5 shows the 
C-V characteristic of the Al-(Ge+GeO

is the Urbach's 
energy. The Urbach's “tail of states” is associated with defects caused by the violation of the long-
range ordering of the structure in amorphous materials [41,42].

2)-Si structure based on the film obtained at 700 °C. It has a 
hysteresis of (1-2) V and a counterclockwise direction. The latter indicates ion drift in the material 
[43]. Flat band voltage VFB=2V, which indicates the predominance of a negative fixed charge 
(density NFB=2.6∙1011 cm-2).
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latter indicates ion drift in the material [43]. Flat band voltage 
VFB=2V, which indicates the predominance of a negative fixed 
charge (density NFB=2.6∙1011 cm-2).
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Figure 5: C - V characteristic of structure (Ge+GeO2) – Si.

The breakdown voltage of the film reaches 2∙107 V/cm. This 
high value determines the prospects for using the (Ge+GeO2) 
film for interlayer insulation in semiconductor devices.

2.1. Footnotes
(*) It is known that many oxides, especially GeO2, dissociate 
with the release of oxygen under electron or ion irradiation. This 
may cause a false signal of germanium. We prevented thermal 
destruction by reducing the energy of the primary beams (˂2.5 
keV) and decreasing the density of current.

(**) In the Auger spectra of homogeneous solid solutions of 
GeOx (0≤x≤2), a singlet peak is observed, the maximum of 
which shifts from 1140 to 1147 eV depending on x.
 
3. Conclusion
The reaction of oxidation of single-crystalline germanium in 
water vapor Ge+H2O=GeO+H2 is investigated, when volatile 
germanium monoxide is formed. GeO does not remain on the 
germanium surface and evaporates immediately. In the cold zone 
of reactor monoxide, it disproportionates into germanium and 

its dioxide 2GeO=Ge+GeO2. Film (Ge+GeO2) creates a good 
interface with silicon. The breakdown voltage of the film under 
study reaches ≅2∙107 V/cm, which determines the prospects for 
its use in semiconductor devices for interlayer isolation.
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