
Volume - 1 Issue - 1

Page 1 of 9
Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

Engineering and Applied Sciences
Journal

Muluken Hussen Asebel1*, Shimelis Getu Assefa2 and Mesfin Abebe Haile1

1Adama Science and Technology University, Adama, Ethiopia.

2University of Denver, Katherine A. Ruffatto Hall, 1999 East
Evans Avenue Denver, CO 80208-1700, USA.

Enhancing English to Amharic Machine Translation with Prior
Knowledge Integration: Leveraging Syntactic Structures of the
Source Language

Accepted: 2024 Nov 27Received: 2024 Nov 07

Corresponding Author: Muluken Hussen Asebel, Ada-
ma Science and Technology University, Adama, Ethiopia.

Published: 2024 Dec 31

Research Article

Abstract
Machine translation has made significant progress in automating the conversion of human languages via computational
methods. However, achieving human-level performance remains challenging, particularly for languages such as Amharic. This
paper aims to bridge this gap by integrating prior knowledge, particularly the syntactic structure of the source language, into
graph neural networks for English-to-Amharic machine translation. Our objective is to systematically evaluate the effectiveness
of integrating source language syntactic information into GNNs to improve English to Amharic machine translation quality. We
conduct a thorough review of the relevant literature and describe the preprocessing steps for both existing and newly collected
parallel corpora used in training. Our approach involves preprocessing data and discussing the proposed Graph2Seq models.
The experimental results demonstrate a notable 4.56% increase in the bilingual evaluation understudy (BLEU) score compared
with the baseline score, indicating a significant improvement in translation quality. Moreover, our models exhibit a 1.98%
enhancement in the BLEU score over previous attempts, highlighting the value of integrating syntactic information into graph
neural networks. Through meticulous experimentation and analysis, we illustrate the efficacy of incorporating source language
syntax into GNNs for enhancing English-to-Amharic machine translation. This study advances machine translation systems,
particularly for low-resource languages, and lays the foundation for future research in integrating syntactic knowledge across
diverse linguistic tasks and languages.

Keywords: Graph Neural Networks, English, Amharic Language, Syntactic of Source Language, Prior Knowledge, Machine
Translation, BLEU Score

1. Introduction
Machine translation, the automated conversion of human
languages via computational methods, has been the subject
of extensive research and development in recent years. While
significant progress has been made in improving translation
quality and efficiency, the field continues to face challenges
in achieving human-level performance. Researchers have
proposed leveraging previous translation knowledge,
such as syntactic language structures, to reinforce neural
machine translation (NMT) systems [1,2]. Despite these
advancements, current NMT systems predominantly
rely on sequential encoder-decoder architectures, which
often overlook the explicit consideration of syntax or the
hierarchical nature of language [3-5]. This underutilization
of syntactic information in NMTs can be attributed to the
difficulty of effectively integrating structured linguistic
information into neural encoders, especially recurrent
neural networks (RNNs).

Acknowledging the cautionary insights of researchers such
as is essential, as they highlight the ongoing challenge

of attaining human-like translation quality [6]. Despite
advancements in machine learning and natural language
processing, machines still struggle to emulate the nuanced
understanding and context sensitivity inherent in human
translation. On the other hand, scholars have emphasized
the importance of knowledge-based approaches in machine
translation [7,8]. Emphasized the need to integrate domain-
specific knowledge and linguistic rules into translation
systems to improve their accuracy and robustness. Similarly,
the research of delves into the fusion of linguistic and
worldly knowledge in meaning representation, advocating
for a holistic approach to translation that goes beyond
mere language processing [7]. Collectively, these studies
underscore the pivotal role of integrating prior knowledge
in machine translation. By providing syntactic information
from the source language to encoder translation models, we
can better understand and generate accurate translations.
This holistic approach not only enhances translation quality
but also lays the groundwork for advancing the capabilities
of machine translation systems toward achieving human-
like performance.

Volume - 1 Issue - 1

Page 2 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

Attention-based NMT systems, proposed and use latent
feature vectors to represent the words of the source
sentence in the encoder [4,9,10]. These vectors are used
for translation generation. Our objective is to automatically
incorporate information about the syntactic relationships of
the source language into the encoder, potentially improving

the quality of the translation. Since the vectors correspond to
words, it is logical to utilize a dependency syntax tree. Syntax
dependency trees, shown in Figure 1, illustrate the syntactic
relationships between words. In the example, "I" is the
subject of the predicate "booked," and "ticket" is its object.

in machine translation. By providing syntactic information from the source language to encoder

translation models, we can better understand and generate accurate translations. This holistic

approach not only enhances translation quality but also lays the groundwork for advancing the

capabilities of machine translation systems toward achieving human-like performance.

Attention-based NMT systems, proposed by Bastings et al. (2017), Bahdanau et al. (2014b) and

Luong et al. (2015), use latent feature vectors to represent the words of the source sentence in the

encoder. These vectors are used for translation generation. Our objective is to automatically

incorporate information about the syntactic relationships of the source language into the encoder,

potentially improving the quality of the translation. Since the vectors correspond to words, it is

logical to utilize a dependency syntax tree. Syntax dependency trees, shown in Figure 1,

illustrate the syntactic relationships between words. In the example, "I" is the subject of the

predicate "booked," and "ticket" is its object.

Figure 1: Syntax dependency tree for the example sentence: “I booked a ticket to Adama”

We employ graph neural networks (GNNs) to create syntax-aware feature representations for

words. This approach leverages the structural information within syntactic graphs to enhance the

understanding of word relationships and dependencies, resulting in more accurate and

contextually relevant feature representations (Bastings et al., 2017). By using GNNs, we can

effectively capture and incorporate the intricate syntactic patterns present in the language,

leading to improved performance of the machine translation model.

Research has underscored the effectiveness of integrating source language syntax as prior

knowledge in graph neural networks (GNNs), resulting in notable improvements in natural

language processing (NLP) overall and particularly in machine translation tasks (Bahdanau et al.,

Figure 1: Syntax Dependency Tree for the Example Sentence: I Booked a Ticket to Adama

We employ graph neural networks (GNNs) to create syntax-
aware feature representations for words. This approach
leverages the structural information within syntactic graphs
to enhance the understanding of word relationships and
dependencies, resulting in more accurate and contextually
relevant feature representations [4]. By using GNNs, we can
effectively capture and incorporate the intricate syntactic
patterns present in the language, leading to improved
performance of the machine translation model. Research has
underscored the effectiveness of integrating source language
syntax as prior knowledge in graph neural networks (GNNs),
resulting in notable improvements in natural language
processing (NLP) overall and particularly in machine
translation tasks [3-5]. These studies collectively highlight
the significant potential of integrating source language
syntax as prior knowledge in GNNs to increase performance
levels in machine translation tasks.

Scholars have explored various methodologies for English-
to-Amharic machine translation. For example, researchers
like [11-16] have employed statistical machine translation.
And have also worked on phone-based statistical machine
translation, while focused on phrase-based statistical
approaches. Additionally, combined context-based machine
translation (CBMT) with recurrent neural networks and
investigated the impact of normalized Amharic phonemes
using a transformer model [17,18]. However, to the best
of our knowledge, no studies have attempted to integrate
source language syntax and employ an attention-based
graph-to-sequence methodology for English-to-Amharic
machine translation.

The objective of this research is to explore the integration
of prior knowledge, specifically the syntactic structure of
the source language, into graph neural networks (GNNs) for
English-to-Amharic machine translation. By incorporating
syntactic information during the translation process, the aim
is to increase the accuracy and fluency of machine-translated
text, thereby enhancing the performance of English-to-
Amharic translation systems. We based our research on the
findings of who utilized the transformer model and further
refined it by fine-tuning it with the pretrained M2M100
48 M, which served as a baseline translation system

[18]. This approach offers a benchmark against which
we can assess the performance of our translation model.
By leveraging their methodology, we can systematically
evaluate the effectiveness of the proposed modifications or
enhancements.

Section II presents an in-depth review of the relevant
literature, followed by Section III, which elaborates on
both the existing parallel corpus and the recently acquired
corpus from a distinct domain and delves into the syntactical
encoder. The procedural steps involved in preprocessing
both corpora are outlined in Section IV. Section V delves into
the discussion of the proposed Graph2Seq models, while
Section VI presents the outcomes of the experiments. Finally,
Section VII concludes the paper, providing reflections on
future research directions.

1.1. Related Work
In this section, we explore the complexities of machine
translation specifically tailored for the Amharic language.
We shed light on the diverse approaches and challenges
within this domain and the limited research dedicated to
low-resource languages such as Amharic, largely due to the
scarcity of parallel data [18]. Several approaches have been
explored for translating Amharic to English, with differing
levels of success. Achieved a BLEU score of 35.32% via the
statistical machine translation (SMT) method, which was
further elevated to 37.53% by incorporating phonemic
transcription in 2020, conducted an evaluation of Amharic
machine translation (MT) systems to assess their quality
[14-20]. While the study revealed the potential of these
systems, it also highlighted their relatively low BLEU scores.
From an alternative perspective, these studies collectively
underscore the potential for enhancing Amharic-English
translation, particularly through the utilization of SMT and
phonemic transcription methodologies.

Examined the effectiveness of employing a combination of
context-based machine translation (CBMT) and recurrent
neural network machine translation (RNNMT) for English–
Amharic translation [17]. Their study revealed that this
hybrid approach outperformed simple neural machine
translation (NMT) and delved into the impact of dictionaries

Volume - 1 Issue - 1

Page 3 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

on translation quality. The findings showed that combining
CBMT and RNNMT yielded enhanced translation results
for English–Amharic translation, particularly with larger
datasets such as the New Testament Bible. Additionally, the
accuracy of the dictionary utilized by CBMT significantly
influences the overall performance. Asserted that normalizing
Amharic homophone characters can significantly augment
the performance of Amharic-English machine translation in
both directions [18]. Their study focused on a comprehensive
Amharic-English parallel sentence dataset and examined the
impact of Amharic homophone normalization on machine
translation performance, with the objective of improving
Amharic-English translation. The findings suggest that
normalizing Amharic homophone characters leads to
improved machine translation performance. Notably, the
M2M-100 model outperforms the transformer-based
models, and homophone normalization further enhances the
performance of the NMT system.

In the domain of neural machine translation (NMT), the
integration of prior knowledge emerges as a critical factor
in augmenting translation quality. It plays a pivotal role
in empowering systems to effectively manage lexical and
syntactic ambiguity [21]. Additionally, the incorporation of
similarity-aware NMT, which identifies promising sentences
and leverages translation memory, has significantly reduced
the workload of human translators [22]. Furthermore,
recent investigations into the significance of context in NMT
underscore the value of considering a broader unstructured
context to enhance translation quality, as emphasized in
studies such as [23]. In recent years, there has been a notable
surge in interest regarding the application of graph neural
networks (GNNs) in natural language processing (NLP),
driven by their potential to capture the complex relationships
and structures inherent in linguistic data. Scholars such as
have made substantial contributions to this growing field
through their comprehensive surveys, which offer detailed
insights into the diverse subdomains of the NLP impacted by
GNNs [24,25]. Their surveys meticulously categorize various
areas of NLP research, ranging from sentiment analysis to
machine translation, and explore how GNNs are employed
within each domain. Moreover, they provide an overview of
benchmark datasets and commonly used evaluation metrics
tailored to GNN models, facilitating a deeper understanding
of their performance and capabilities.

In particular, enriched the discourse by introducing a
taxonomy of GNNs for NLP, delineating the research
landscape into three main areas: graph construction, graph
representation learning, and graph-based encoder-decoder
models [23]. This framework offers a structured approach
to understanding the diverse methodologies and techniques
employed in GNN-based NLP research. Collectively, these
research efforts highlight the growing importance of
GNNs in NLP and underscore the need for continued
research efforts to address the remaining challenges, such
as scalability, interpretability, and generalization across
different linguistic tasks and languages. Graph convolutional
networks (GCNs) have emerged as a prominent
methodology, leveraging predicted syntactic dependency
trees of source sentences to generate word representations,
or hidden states of the encoder, that incorporate syntactic
neighborhood information. GCNs seamlessly integrate as
layers into standard encoders, such as bidirectional RNNs
or convolutional neural networks. An evaluation conducted
through English–German and English–Czech translation
experiments revealed substantial improvements over
syntax-agnostic versions across all the setups. This approach
underscores the potential of incorporating syntax-aware
features to augment the capabilities of neural machine
translation models [4].

2. Methodology
2.1. Parallel Dataset Preparation
The dataset used for training and evaluating English-to-
Amharic machine translation is a parallel corpus created
by [18]. This corpus is larger than previous ones and is
freely available for research purposes. It was used to train
neural machine translation models. Importantly, the neural
machine translation models, especially those using subword
units, achieved the highest BLEU scores, demonstrating their
exceptional performance in this task [13]. The following
table illustrates that compiled the most extensive parallel
corpus for English to Amharic language pairs. In addition
to the datasets outlined in Table 1, also played a role in
MT research by developing a novel parallel corpus [11,18].
This corpus consists of 33,955 sentence pairs sourced from
various news platforms, including the Ethiopian Press
Agency, Fana Broadcasting Corporate, and Walt Information
Center. As the data are drawn from diverse sources, they
encompass a wide range of domains, such as religious texts,
politics, economics, sports, and news.

Data source # Sentence pairs Accessible
Am-En ELRA-W0074 13,347 Yes
Biadgligne, Y., & Smaïli, K. (2021) 225,304 Yes
Horn MT2 2,030 Yes
Am-En MT corpus3 53,312 Yes
(Gezmu et al., 2022) 145,364 Yes
Abate et al. (2018) 40,726 Yes
Lison & Tiedemann (2016) 562,141 Yes
Tracey & Strassel (2020) 60,884 No
Admasethiopia4 153 Yes

Volume - 1 Issue - 1

Page 4 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

MT Evaluation Dataset5 2,914 Yes
Destaw Belay et al. (2022) 33,955 Yes
Total 1,140,130 Yes
Unique sentence pairs 888,837 Yes

Table 1: Available Amharic and English Parallel Data

The dataset consists of approximately 1.1 million parallel
sentences, with approximately 888,837 being distinct.
This variation occurs because of duplicate sentences in the
source materials. Notably, this collection of unique parallel
sentences is the most extensive compilation achieved to
date [18]. We have extensively used this dataset for our
experimental endeavors.

2.2. Graph Neural Networks
Graph neural networks (GNNs) are a class of neural networks
designed to perform machine learning tasks on graph-
structured data. Unlike traditional neural networks that
operate on vector spaces, GNNs can capture the relationships
and dependencies between entities represented as nodes
and edges in a graph. GNNs play a crucial role in the
Graph2Seq architecture, which is specifically designed to
handle structured data represented as graphs and generate
sequential outputs. Graph2Seq uses an encoder‒decoder
framework that excels in machine translation. The GNN
functions as the encoder, transforming the input graph
composed of nodes and edges into node embeddings that
capture both the structural and feature information of the
graph. By aggregating information from neighboring nodes
and iteratively updating node representations, the GNN
effectively captures the topology and features of the graph.

The node embeddings generated by the GNN contain
abundant information, representing the syntactic or
structural characteristics of the graph. For tasks such as
machine translation, these embeddings can encode the
syntactic structure of a sentence, capturing dependencies
and relationships between words. GNNs provide contextual
embeddings for each node, taking into account the entire
graph structure, which aids in capturing long-range
dependencies and complex relationships. These contextual
embeddings are vital for accurately generating sequences
that are contextually relevant during the decoding phase.

2.3. Syntactic Encoder
In our proposed system, we seamlessly incorporate source
language syntax into the translation process through the use
of graph neural networks (GNNs). These GNNs are applied

to the predicted syntactic dependency trees of the source
sentences. Through this approach, the representations of
words are made sensitive to their syntactic neighborhoods.
This means that the relationships between words in a sentence,
as represented by the syntactic dependency tree, are taken
into account when encoding the source sentence. The GNNs
within our system operate by taking word representations
as inputs and producing word representations as outputs.
They can be incorporated as layers into standard encoders,
such as those on top of bidirectional RNNs or convolutional
neural networks. This integration of syntax into the
encoder allows the encoder to have access to rich syntactic
information. Consequently, the encoder gains the flexibility
to discern which aspects of syntax are beneficial to the
machine translation task without imposing rigid constraints
on their interaction. This adaptable approach ensures that
the translation process remains dynamic and responsive
to the intricacies of language structure. Overall, leveraging
GNNs to incorporate syntactic information into the encoder
enriches the translation process by harnessing the structural
relationships among words in the source language sentences.
This informed approach has the potential to improve
translation quality by ensuring a deeper understanding of
the underlying linguistic context.

2.4. The Proposed Graph2Seq Machine Translation Mod-
el
The overall structure of the sequence-to-sequence model
(encoder-decoder), which is commonly used, is shown in
Figure 1. This research aims to incorporate prior knowledge
on the encoder side. Despite their versatility and capacity
for expressive output, Seq2Seq models are constrained by
a significant limitation: their applicability is limited to tasks
with input data presented solely as sequences. However,
sequences represent merely the fundamental form of
structured data, while many critical problems demand a
more sophisticated structure. For example, graphs, with
their capacity to encapsulate intricate pairwise relationships
within the data, are indispensable for addressing complex
challenges [26]. Therefore, the proposed method uses a
GNN, which enables us to embed prior knowledge, such as
the syntax of the source language.

The overall structure of the sequence-to-sequence model (encoder-decoder), which is commonly

used, is shown in Figure 1. This research aims to incorporate prior knowledge on the encoder

side. Despite their versatility and capacity for expressive output, Seq2Seq models are constrained

by a significant limitation: their applicability is limited to tasks with input data presented solely

as sequences. However, sequences represent merely the fundamental form of structured data,

while many critical problems demand a more sophisticated structure. For example, graphs, with

their capacity to encapsulate intricate pairwise relationships within the data, are indispensable for

addressing complex challenges (Xu et al., 2018). Therefore, the proposed method uses a GNN,

which enables us to embed prior knowledge, such as the syntax of the source language.

Figure 2: Encoder-decoder model

In our study, the encoder we employ utilizes a syntactic dependency tree of the source language,

which undergoes processing via graph neural networks (GNNs). The construction of our encoder

involves a series of steps aimed at maximizing the utilization of this graph-based representation.

First, we represent the input sentence as a graph structure. We then incorporate two layers to

facilitate the learning of node representations, leveraging this graph representation. These node

representations serve as the basis for generating the attention-based context vector, which is then

passed to the decoder. Notably, our architecture employs the standard transformer decoder. By

focusing exclusively on the states of textual nodes, our approach empowers the decoder to

dynamically leverage contextual information, thereby enhancing its translation capabilities.

Figure 2: Encoder-Decoder Model

Volume - 1 Issue - 1

Page 5 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

In our study, the encoder we employ utilizes a syntactic
dependency tree of the source language, which undergoes
processing via graph neural networks (GNNs). The
construction of our encoder involves a series of steps
aimed at maximizing the utilization of this graph-based
representation. First, we represent the input sentence as a
graph structure. We then incorporate two layers to facilitate
the learning of node representations, leveraging this graph

representation. These node representations serve as the
basis for generating the attention-based context vector,
which is then passed to the decoder. Notably, our architecture
employs the standard transformer decoder. By focusing
exclusively on the states of textual nodes, our approach
empowers the decoder to dynamically leverage contextual
information, thereby enhancing its translation capabilities
[27].

Figure 3: Transformer Encoder-Decoder architecture (source: Vaswani et al. (2017)); the
proposed English-to-Amharic machine translation architectureFigure 3: Transformer Encoder-Decoder Architecture; the Proposed English-to-Amharic Machine Translation

Architecture

Figure 2 shows the main workflow of our study. The
architecture consists of two main components: the encoder
and the decoder. The encoder is responsible for processing
the source language, which, in this case, is English, through
multiple layers before passing it to the decoder. Conversely,
the decoder receives input from the encoder and generates
the target language, which in our context is Amharic. The
preprocessed graph-based data undergo processing in an
embedding layer before being fed into the stacked fusion
layers. The first layer in the stack of fusion layers is the
multihead self-attention layer. In this layer, self-attention
mechanisms are used to generate contextual representations
for each node, combining messages from neighboring nodes.

Formally, the contextual representations of all textual
nodes are calculated as follows

where Multi Head (Q, K, V) is a multihead self-attention
function that takes a query matrix Q, a key matrix K, and a
value matrix V as inputs.

We also adopt positionwise feed forward networks
to generate textual node states

where denotes the above updated representations
of all textual nodes.
On the side of the decoder, we employ a layer similar to the
transformer decoder layer. In the method of Ld identical
layers are stacked, where each layer l is made up of three
sublayers, to create target-side concealed states [27]. To
integrate the target and source-side contexts, the first two
sublayers are masked self-attention and encoder-decoder
attention:

where denotes the target-side hidden states in the l-1-th
layer. In particular, are the embeddings of the input target
words. Then, a positionwise fully connected forward neural
network is used to produce as follows:

Finally, the probability distribution of generating the target
sentence is defined by using a Softmax layer, which takes the
hidden states in the top layer as input:

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Formally, the contextual representations Cx
(l) of all textual nodes are calculated as follows:

Figure 2 shows the main workflow of our study. The architecture consists of two main

components: the encoder and the decoder. The encoder is responsible for processing the source

language, which, in this case, is English, through multiple layers before passing it to the decoder.

Conversely, the decoder receives input from the encoder and generates the target language,

which in our context is Amharic. The preprocessed graph-based data undergo processing in an

embedding layer before being fed into the stacked fusion layers. The first layer in the stack of

fusion layers is the multihead self-attention layer. In this layer, self-attention mechanisms are

used to generate contextual representations for each node, combining messages from neighboring

nodes.

Cx
(l) = MultiHead� Hx

l−1, Hx
l−1, Hx

l−1�, (1)

where MultiHead(Q, K, V) is a multihead self-attention function that takes a query matrix Q, a

key matrix K, and a value matrix V as inputs.

We also adopt positionwise feed forward networks 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥
𝑙𝑙) to generate textual node

states𝐻𝐻𝑥𝑥
(𝑙𝑙)

𝐻𝐻𝑥𝑥
(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑀𝑀𝑥𝑥

𝑙𝑙), (2)

where 𝑀𝑀𝑥𝑥
(𝑙𝑙) = {𝑀𝑀𝑥𝑥𝑥𝑥

(𝑥𝑥)} denotes the above updated representations of all textual nodes.

On the side of the decoder, we employ a layer similar to the transformer decoder layer. In the

method of (Vaswani et al., 2017), Ld

𝐸𝐸𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀(𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1, 𝑆𝑆𝑙𝑙−1), (3)

identical layers are stacked, where each layer l is made up

of three sublayers, to create target-side concealed states. To integrate the target and source-side

contexts, the first two sublayers are masked self-attention and encoder-decoder attention:

𝑇𝑇𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻𝑀𝑀𝑀𝑀𝑀𝑀� 𝐸𝐸𝑙𝑙 ,𝐻𝐻𝑥𝑥
(𝐿𝐿𝐿𝐿),𝐻𝐻𝑥𝑥

(𝐿𝐿𝐿𝐿)�, (4)

where 𝑆𝑆𝑙𝑙−1 denotes the target-side hidden states in the l-1-th layer. In particular, 𝑆𝑆(0) are the

embeddings of the input target words. Then, a positionwise fully connected forward neural

network is used to produce 𝑆𝑆(𝑙𝑙) as follows:

𝑆𝑆(𝑙𝑙) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑆𝑆(𝑙𝑙)) (5)

Finally, the probability distribution of generating the target sentence is defined by using a

Softmax layer, which takes the hidden states in the top layer as input:

𝑃𝑃(𝑌𝑌 |𝑋𝑋) = ∏ 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆(𝑊𝑊𝑆𝑆𝑡𝑡𝐿𝐿𝐿𝐿 + 𝑏𝑏)𝑡𝑡 (6)

Volume - 1 Issue - 1

Page 6 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

where X is the input sentence, Y is the target sentence (i.e.,
the Amharic sentence in our case), and W and b are the
parameters of the Softmax layer.

3. Experimental Setup and Results
3.1. Experimental
To validate the effectiveness of our proposed system, we
conducted experiments employing the attention-based
Graph2Seq model [26,28]. This model, renowned for its
ability to capture syntactic dependency trees within graph
structures, served as a robust framework for our evaluation.
We employed Google Colab to train our English-to-Amharic
translation models. This entailed partitioning parallel
sentences for English and Amharic into three distinct sets:
80% for training, 10% for validation, and 10% for testing
purposes. We use the Adam optimizer with a learning rate
of 0.001 [29]. The batch size is set to 32, and the hidden
size is set to 128. We apply dropout with a probability of
0.1 between layers. We train for 50 epochs. Assessing model
performance relies on the bilingual evaluation under study
(BLEU) metric [30]. Ranging from 0 to 1, the BLEU score
gauges the resemblance between the translated output and
the reference. A score of 1 signifies a flawless match, whereas
0 denotes no matching words. In addition to the English-
Amharic dataset, we evaluated the proposed model using
English-Tigrinya dataset. Both Tigrinya and Amharic are
Ge’ez-scripted Semitic languages that are low-resource and
share considerable morphological and lexical similarities
[31]. For this experiment, we used a parallel dataset of 340K
English-Tigrinya sentence pairs.

Transformer: we used the Open NMT framework in
conjunction with TensorFlow deep learning to train
Transformer sequence-to-sequence models specifically for
English to Amharic NMT. The training process was conducted
from scratch [32]. To tokenize the text, we employed Byte
Pair Encoding a subword tokenization method [33]. Byte
Pair Encoding acts as a data compression algorithm that
replaces the most frequently occurring pair of consecutive
bytes with a byte that does not appear in the data. The model
was trained using various. parameters, including 512 hidden
units, 6 layers, a learning rate of 0.0001, a maximum step of
50K, a batch size of 32, and the Adam optimizer. Pre-trained
model: To develop our bi-directional English-to-Amharic
NMT system, we utilized the multilingual Facebook M2M-
100 pre-trained model with 418M parameters [34]. For
fine-tuning, the training and validation were conducted with
a maximum source and target length of 128 per device. We
used a batch size of 4 and trained for 4 epochs.

Parameters, including 512 hidden units, 6 layers, a learning
rate of 0.0001, a maximum step of 50K, a batch size of 32,
and the Adam optimizer. Pre-trained model: To develop our
bi-directional English-to-Amharic NMT system, we utilized
the multilingual Facebook M2M-100 pre-trained model
with 418M parameters [34]. For fine-tuning, the training
and validation were conducted with a maximum source and
target length of 128 per device. We used a batch size of 4
and trained for 4 epochs. parameters, including 512 hidden
units, 6 layers, a learning rate of 0.0001, a maximum step of
50K, a batch size of 32, and the Adam optimizer.

3.2. Pre-Trained Model
To develop our bi-directional English-to-Amharic NMT
system, we utilized the multilingual Facebook M2M-100 pre-
trained model with 418M parameters [34]. For fine-tuning,
the training and validation were conducted with a maximum
source and target length of 128 per device. We used a batch
size of 4 and trained for 4 epochs.

4. Results and Discussion
In our experimental setup, we utilized a methodically
normalized dataset, ensuring consistency and reliability
across our analyses. Leveraging the syntactic source
language, we use Graph2seq transformer models, capitalizing
on their efficacy in capturing complex syntactic dependency
tree patterns. To establish a robust benchmark, we engaged
in meticulous fine-tuning on M2M100 418 M9, a state-of-
the-art pretrained language model tailored for English to
Amharic translation. This step provided a solid foundation
(baseline) for our subsequent evaluations.

Furthermore, we use the attention-based GNN2Seq model
and Google Syntax Net, enriching the encoder with a
syntactic dependency tree while maintaining the integrity
of the decoder from the standard transformer architecture.
This innovative approach allowed us to explore the nuanced
influence of integrating syntax dependency into the graph
neural networks of the encoder, revealing new insights into
the interplay between syntactic structures and sequence
generation. The following table shows the results.

Table 2 presents the results of three different translation
models evaluated on the task of translating from English
to Amharic and English to Tigrinya, with the performance
metric being the BLEU score, which is a common metric used
to evaluate the quality of machine-translated text.

Model Direction Result (BLEU Score)
Transformer (English→Tigrinya) 12.69
M2M100 418 M (baseline) (English→Tigrinya) 15.59
GNN2Seq (with syntactic integration) (English→Tigrinya) 22.32
Transformer (English→Amharic) 13.06
M2M100 418 M (English→Amharic) 32.74
GNN2Seq (with syntactic integration) (English→Amharic) 37.3

Table 2: Experimental Results for the BLEU Score

Volume - 1 Issue - 1

Page 7 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

4.1. English→Tigrinya
we evaluated the performance of various machine
translation models in translating from English to Tigrinya.
The models considered include a standard Transformer
model, the M2M100 418M model as a baseline, and the
GNN2Seq model with syntactic integration. The transformer
model achieved a BLEU score of 12.69, indicating that
while it can perform the translation task, its accuracy and
fluency are relatively low compared to more other models.
In contrast, the M2M100 418M model, serving as the
baseline, yielded a BLEU score of 15.59, which suggests a
significant improvement over the Transformer model due
to its more sophisticated architecture and larger training
data. Moreover, the GNN2Seq model, which incorporates
syntactic features into the translation process, achieved the
highest BLEU score of 22.32, demonstrating a substantial
improvement over both the Transformer and the baseline
M2M100 418M models and highlighting the effectiveness of
integrating syntactic information in enhancing translation
quality. The comparative analysis of machine translation
models for the English-to-Tigrinya language pair reveals that
incorporating syntactic features into the translation process
substantially enhances performance. The GNN2Seq model
with syntactic integration outperforms both the Transformer
model and the M2M100 418M model, achieving a BLEU
score of 22.32. In comparing our results with the baseline,
we observe a significant increase of 6.73% in the BLEU score,
indicating a substantial improvement in translation quality.
This improvement underscores the importance of leveraging
linguistic structure in low-resource language translation
tasks.

4.2. English→Amharic
The Seq2Seq (Transformer) model achieved a BLEU score of
13.06 while the pre-trained model achieved a BLEU score of
32.74, whereas the GNN2Seq model, with syntax integration,
outperformed and achieved a higher BLEU score of 35.3.
The BLEU score is a measure of how closely the generated
translation matches human-generated reference translations.
A higher BLEU score indicates better translation quality,
with scores above 30 generally considered to be indicative of
relatively good translation performance. The improvement
in the BLEU score from the Seq2Seq model to the GNN2Seq
model suggests that incorporating syntax dependency tree
into the graph neural networks of the encoder, as in the
GNN2Seq model, leads to enhanced translation quality.
This finding indicates that leveraging syntactic information
during the translation process can improve the accuracy and
fluency of the translated text. Additionally, the difference
in BLEU scores between the two models provides valuable
insight into the effectiveness of integrating syntactic
information into neural machine translation models.

Table 3 summarizes various studies on machine translation
between English and Amharic or related languages,
comparing the datasets used, the methodologies applied,
and the resulting BLEU scores. The methods range from
traditional statistical machine translation (SMT) and phrase-
based SMT to more advanced neural machine translation
(NMT) techniques and the use of pre-trained models like
M2M100. The table also highlights the size of the datasets
used in each study, showing a wide variation from as few as
1,915 sentence pairs to over a million, as well as the BLEU
scores that measure the quality of the translations produced.

Authors # Dataset used Method(s) BLEU score
Biadgligne & Smaïli (2022) 225,304 Neural machine translation 32.44
Abate et al. (2018) 40,726 Statistical machine translation 13.31
Teshome & Besacier (2012) 18,432 Phrase-based statistical machine translation 35.32
Ashengo et al. (2021) 8,603 Combination of context-based MT (CBMT) with RNN 11.34
Hadgu et al. (2020b) 1915 Google translate 9.6
Destaw Belay et al. (2022) 1,140,130 M2M100 418 M fine-tuning pre-trained model 32.74
Our work 1,140,130 Attention-based Graph2seq 37.3

Table 3: Previous Studies on English-Amharic Machine Translation Have Been Assessed in Terms of Dataset Size,
Method(s) Used, and the BLEU Score Achieved

Figure 4: Reporting of Our Work Result with Other Previous Works of English-to-Amharic Machine Translation

of pre-trained models like M2M100. The table also highlights the size of the datasets used in

each study, showing a wide variation from as few as 1,915 sentence pairs to over a million, as

well as the BLEU scores that measure the quality of the translations produced.

Figure 4: Reporting of our work result with other previous works of English-to-Amharic
machine translation.

6.

In comparing our results with the baseline, we observe a significant increase of 4.56% in the

BLEU score, indicating a substantial improvement in translation quality. Additionally, as shown

in Figure 3, our models demonstrate a noticeable improvement of 1.98% in the BLEU score

compared with previous attempts. This remarkable enhancement can be largely attributed to the

careful incorporation of syntactic nuances from the source language into the graph neural

networks. By integrating such intricate linguistic structures, our approach enhances the model's

comprehension of sentence syntax and semantics, thereby enabling more precise and fluent

translations.

Conclusion and Future Work

In conclusion, this study highlights the importance of integrating prior knowledge, specifically

source language syntax, into GNN machine translation systems. The incorporation of syntax-

aware features in GNN-based models shows promise for enhancing translation quality,

particularly for low-resource languages such as Amharic and Tigrinya. We have shown

13.31

18.74

11.34

32.44

32.74

9.6

35.32

37.3

0 5 10 15 20 25 30 35 40

Abate et al. (2018)

Ambaye, T., & Yared, M. (2000)

Ashengo et al. (2021)

Biadgligne, Y., & Smaïli, K. (2021)

Destaw Belay et al. (2022)

Hadgu et al. (2020)

Teshome, M. G., & Besacier, L. (2012)

Our work

Volume - 1 Issue - 1

Page 8 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

In comparing our results with the baseline, we observe a
significant increase of 4.56% in the BLEU score, indicating a
substantial improvement in translation quality. Additionally,
as shown in Figure 3, our models demonstrate a noticeable
improvement of 1.98% in the BLEU score compared with
previous attempts. This remarkable enhancement can be
largely attributed to the careful incorporation of syntactic
nuances from the source language into the graph neural
networks. By integrating such intricate linguistic structures,
our approach enhances the model's comprehension of
sentence syntax and semantics, thereby enabling more
precise and fluent translations.

5. Conclusion and Future Work
In conclusion, this study highlights the importance of
integrating prior knowledge, specifically source language
syntax, into GNN machine translation systems. The
incorporation of syntax-aware features in GNN-based models
shows promise for enhancing translation quality, particularly
for low-resource languages such as Amharic and Tigrinya.
We have shown consistent BLEU score improvements for
challenging English–Amharic and English-Tigrigna language
pairs. Future research should further explore the potential of
syntactic integration in improving translation performance
in the translation direction across diverse linguistic tasks
and languages, contributing to the advancement of machine
translation toward human-like performance [35-37].

Acknowledgement
This research received no specific grant from any funding
agency in the public, commercial, or not-for-profit sectors.

Reference
1. Chen, K., Wang, R., Utiyama, M., & Sumita, E. (2021).

Integrating prior translation knowledge into neural
machine translation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 30, 330-339.

2. Yang, Y., Li, X., Jiang, T., Kong, J., Ma, B., Zhou, X., & Wang,
L. (2017, November). Improving adversarial neural
machine translation with prior knowledge. In 2017 IEEE
Global Conference on Signal and Information Processing
(GlobalSIP) (pp. 1373-1377). IEEE.

3. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

4. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., &
Sima'an, K. (2017). Graph convolutional encoders for
syntax-aware neural machine translation. arXiv preprint
arXiv:1704.04675.

5. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to
sequence learning with neural networks. Advances in
neural information processing systems, 27.

6. Isabelle, P., & Foster, G. (2005). Machine translation:
overview.

7. Mahesh, K., & Nirenburg, S. (1996). Meaning represen-
tation for knowledge sharing in practical machine trans-
lation. Proe. the FLAIRS-96 Track on Information Inter-
change.

8. Nirenburg, S. (1989). Knowledge-based machine
translation. Machine Translation, 4(1), 5-24.

9. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

10. Luong, M. T., Pham, H., & Manning, C. D. (2015).
Effective approaches to attention-based neural machine
translation. arXiv preprint arXiv:1508.04025.

11. Biadgligne, Y., & Smaïli, K. (2022, March). Offline corpus
augmentation for english-amharic machine translation.
In 2022 5th International Conference on Information and
Computer Technologies (ICICT) (pp. 128-135). IEEE.

12. Abate, S. T., Melese, M., Tachbelie, M. Y., Meshesha, M.,
Atinafu, S., Mulugeta, W., ... & Shifaw, S. (2018, August).
Parallel corpora for bi-directional statistical machine
translation for seven ethiopian language pairs. In
Proceedings of the First Workshop on Linguistic Resources
for Natural Language Processing (pp. 83-90).

13. Gezmu, A. M., Nürnberger, A., & Bati, T. B. (2021).
Extended parallel corpus for Amharic-English machine
translation. arXiv preprint arXiv:2104.03543.

14. Teshome, M. G., & Besacier, L. (2012, May). Preliminary
experiments on English-Amharic statistical machine
translation. In SLTU (pp. 36-41).

15. Teshome, M. G., Besacier, L., Taye, G., & Teferi, D. (2015,
September). Phoneme-based English-Amharic statistical
machine translation. In AFRICON 2015 (pp. 1-5). IEEE.

16. Teshome, M. G., Besacier, L., Taye, G., & Teferi, D. (2015b).
Phoneme-based English-Amharic statistical machine
translation. AFRICON 2015, 1–5.

17. Ashengo, Y. A., Aga, R. T., & Abebe, S. L. (2021). Context
based machine translation with recurrent neural
network for English–Amharic translation. Machine
translation, 35(1), 19-36.

18. Destaw Belay, T., Lambebo Tonja, A., Kolesnikova, O.,
Muhie Yimam, S., Ayele, A. A., Bogale Haile, S., ... &
Gelbukh, A. (2022). The effect of normalization for bi-
directional amharic-english neural machine translation.
arXiv e-prints, arXiv-2210.

19. Hadgu, A. T., Beaudoin, A., & Aregawi, A. (2020).
Evaluating amharic machine translation. arXiv preprint
arXiv:2003.14386.

20. Hadgu, A. T., Beaudoin, A., & Aregawi, A. (2020).
Evaluating amharic machine translation. arXiv preprint
arXiv:2003.14386.

21. Moussallem, D., Wauer, M., & Ngomo, A. C. N. (2018).
Machine translation using semantic web technologies: A
survey. Journal of Web Semantics, 51, 1-19.

22. Zhang, T., Huang, H., Feng, C., & Wei, X. (2020). Similarity-
aware neural machine translation: reducing human
translator efforts by leveraging high-potential sentences
with translation memory. Neural Computing and
Applications, 32(23), 17623-17635.

23. Popescu-Belis, A. (2019). Context in neural machine
translation: A review of models and evaluations. arXiv
preprint arXiv:1901.09115.

24. Wu, L., Chen, Y., Shen, K., Guo, X., Gao, H., Li, S., ... & Long,
B. (2023). Graph neural networks for natural language
processing: A survey. Foundations and Trends® in
Machine Learning, 16(2), 119-328.

25. Liu, X., Su, Y., & Xu, B. (2021, December). The application
of graph neural network in natural language processing

https://drive.google.com/file/d/1YiFXEzIUtKAkKU-4NZUSV3uWMuoExaMD/view
https://drive.google.com/file/d/1YiFXEzIUtKAkKU-4NZUSV3uWMuoExaMD/view
https://drive.google.com/file/d/1YiFXEzIUtKAkKU-4NZUSV3uWMuoExaMD/view
https://drive.google.com/file/d/1YiFXEzIUtKAkKU-4NZUSV3uWMuoExaMD/view
https://ieeexplore.ieee.org/abstract/document/8309186/
https://ieeexplore.ieee.org/abstract/document/8309186/
https://ieeexplore.ieee.org/abstract/document/8309186/
https://ieeexplore.ieee.org/abstract/document/8309186/
https://ieeexplore.ieee.org/abstract/document/8309186/
https://peerj.com/articles/cs-2607/code.zip
https://peerj.com/articles/cs-2607/code.zip
https://peerj.com/articles/cs-2607/code.zip
https://arxiv.org/pdf/1704.04675
https://arxiv.org/pdf/1704.04675
https://arxiv.org/pdf/1704.04675
https://arxiv.org/pdf/1704.04675
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://philpapers.org/rec/ISAMTO
https://philpapers.org/rec/ISAMTO
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fd1b6e29eae7b6bd468a55d57f73e6129d0122ff
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fd1b6e29eae7b6bd468a55d57f73e6129d0122ff
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fd1b6e29eae7b6bd468a55d57f73e6129d0122ff
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fd1b6e29eae7b6bd468a55d57f73e6129d0122ff
https://aclanthology.org/C86-1148.pdf
https://aclanthology.org/C86-1148.pdf
https://peerj.com/articles/cs-2607/code.zip
https://peerj.com/articles/cs-2607/code.zip
https://peerj.com/articles/cs-2607/code.zip
https://arxiv.org/pdf/1508.04025
https://arxiv.org/pdf/1508.04025
https://arxiv.org/pdf/1508.04025
https://hal.science/hal-03547539/document
https://hal.science/hal-03547539/document
https://hal.science/hal-03547539/document
https://hal.science/hal-03547539/document
https://aclanthology.org/W18-3812.pdf
https://aclanthology.org/W18-3812.pdf
https://aclanthology.org/W18-3812.pdf
https://aclanthology.org/W18-3812.pdf
https://aclanthology.org/W18-3812.pdf
https://aclanthology.org/W18-3812.pdf
https://arxiv.org/pdf/2104.03543
https://arxiv.org/pdf/2104.03543
https://arxiv.org/pdf/2104.03543
https://www.isca-archive.org/sltu_2012/teshome12_sltu.pdf
https://www.isca-archive.org/sltu_2012/teshome12_sltu.pdf
https://www.isca-archive.org/sltu_2012/teshome12_sltu.pdf
https://ieeexplore.ieee.org/abstract/document/7331921/
https://ieeexplore.ieee.org/abstract/document/7331921/
https://ieeexplore.ieee.org/abstract/document/7331921/
https://ieeexplore.ieee.org/abstract/document/7331921/
https://ieeexplore.ieee.org/abstract/document/7331921/
https://ieeexplore.ieee.org/abstract/document/7331921/
https://openreview.net/pdf?id=r1lUdpVtwB
https://openreview.net/pdf?id=r1lUdpVtwB
https://openreview.net/pdf?id=r1lUdpVtwB
https://openreview.net/pdf?id=r1lUdpVtwB
https://arxiv.org/pdf/2210.15224
https://arxiv.org/pdf/2210.15224
https://arxiv.org/pdf/2210.15224
https://arxiv.org/pdf/2210.15224
https://arxiv.org/pdf/2210.15224
https://arxiv.org/pdf/2003.14386
https://arxiv.org/pdf/2003.14386
https://arxiv.org/pdf/2003.14386
https://arxiv.org/pdf/2003.14386
https://arxiv.org/pdf/2003.14386
https://arxiv.org/pdf/2003.14386
https://arxiv.org/pdf/1711.09476
https://arxiv.org/pdf/1711.09476
https://arxiv.org/pdf/1711.09476
https://link.springer.com/article/10.1007/s00521-020-04939-y
https://link.springer.com/article/10.1007/s00521-020-04939-y
https://link.springer.com/article/10.1007/s00521-020-04939-y
https://link.springer.com/article/10.1007/s00521-020-04939-y
https://link.springer.com/article/10.1007/s00521-020-04939-y
https://arxiv.org/pdf/1901.09115
https://arxiv.org/pdf/1901.09115
https://arxiv.org/pdf/1901.09115
https://www.nowpublishers.com/article/DownloadSummary/MAL-096
https://www.nowpublishers.com/article/DownloadSummary/MAL-096
https://www.nowpublishers.com/article/DownloadSummary/MAL-096
https://www.nowpublishers.com/article/DownloadSummary/MAL-096
https://ieeexplore.ieee.org/abstract/document/9730987/
https://ieeexplore.ieee.org/abstract/document/9730987/

Volume - 1 Issue - 1

Page 9 of 9

Copyright © Muluken Hussen AsebelEngineering and Applied Sciences Journal

Citation: Asebel, M. H., Assefa, S. G., Haile, M. A. (2025). Enhancing English to Amharic Machine Translation with Prior Knowledge Integration: Leveraging
Syntactic Structures of the Source Language. Eng Appl Sci J, 1(1), 1-9.

and computer vision. In 2021 3rd International
Conference on Machine Learning, Big Data and Business
Intelligence (MLBDBI) (pp. 708-714). IEEE.

26. Xu, K., Wu, L., Wang, Z., Feng, Y., Witbrock, M., & Sheinin,
V. (2018). Graph2seq: Graph to sequence learning
with attention-based neural networks. arXiv preprint
arXiv:1804.00823.

27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is
all you need. Advances in neural information processing
systems, 30.

28. Itoh, T. D., Kubo, T., & Ikeda, K. (2022). Composition-
ality-Aware Graph2Seq Learning. arXiv preprint arX-
iv:2201.12178.

29. Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

30. Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July).
Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting of
the Association for Computational Linguistics (pp. 311-
318).

31. Feleke, T. L. (2017, April). The similarity and mutual
intelligibility between Amharic and Tigrigna varieties.
In Proceedings of the fourth workshop on nlp for similar

languages, varieties and dialects (vardial) (pp. 47-54).
32. Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. M.

(2017). Opennmt: Open-source toolkit for neural
machine translation. arXiv preprint arXiv:1701.02810.

33. Gage, P. (1994). A new algorithm for data compression.
The C Users Journal, 12(2), 23-38.

34. Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A.,
Goyal, S., ... & Joulin, A. (2021). Beyond english-centric
multilingual machine translation. Journal of Machine
Learning Research, 22(107), 1-48.

35. Asebel, M. H., Assefa, S. G., & Haile, M. A. (2024).
Enhancing English to Amharic machine translation
with prior knowledge integration: Leveraging syntactic
structures of the source language.

36. Lison, P., & Tiedemann, J. (2016). Opensubtitles2016:
Extracting large parallel corpora from movie and tv
subtitles.

37. Tracey, J., & Strassel, S. (2020, May). Basic language
resources for 31 languages (plus English): The
LORELEI representative and incident language packs.
In Proceedings of the 1st Joint Workshop on Spoken
Language Technologies for Under-resourced languages
(SLTU) and Collaboration and Computing for Under-
Resourced Languages (CCURL) (pp. 277-284).

https://ieeexplore.ieee.org/abstract/document/9730987/
https://ieeexplore.ieee.org/abstract/document/9730987/
https://ieeexplore.ieee.org/abstract/document/9730987/
https://arxiv.org/pdf/1804.00823
https://arxiv.org/pdf/1804.00823
https://arxiv.org/pdf/1804.00823
https://arxiv.org/pdf/1804.00823
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/pdf/2201.12178
https://arxiv.org/pdf/2201.12178
https://arxiv.org/pdf/2201.12178
https://arxiv.org/pdf/1412.6980
https://arxiv.org/pdf/1412.6980
https://aclanthology.org/P02-1040.Pdf
https://aclanthology.org/P02-1040.Pdf
https://aclanthology.org/P02-1040.Pdf
https://aclanthology.org/P02-1040.Pdf
https://aclanthology.org/P02-1040.Pdf
https://aclanthology.org/W17-1206.pdf
https://aclanthology.org/W17-1206.pdf
https://aclanthology.org/W17-1206.pdf
https://aclanthology.org/W17-1206.pdf
https://arxiv.org/pdf/1701.02810
https://arxiv.org/pdf/1701.02810
https://arxiv.org/pdf/1701.02810
https://dl.acm.org/doi/abs/10.5555/177910.177914
https://dl.acm.org/doi/abs/10.5555/177910.177914
https://www.jmlr.org/papers/volume22/20-1307/20-1307.pdf
https://www.jmlr.org/papers/volume22/20-1307/20-1307.pdf
https://www.jmlr.org/papers/volume22/20-1307/20-1307.pdf
https://www.jmlr.org/papers/volume22/20-1307/20-1307.pdf
https://www.researchsquare.com/article/rs-4748110/latest.pdf
https://www.researchsquare.com/article/rs-4748110/latest.pdf
https://www.researchsquare.com/article/rs-4748110/latest.pdf
https://www.researchsquare.com/article/rs-4748110/latest.pdf
https://www.duo.uio.no/bitstream/handle/10852/50459/947_Paper.pdf?sequence=4&isAllow
https://www.duo.uio.no/bitstream/handle/10852/50459/947_Paper.pdf?sequence=4&isAllow
https://www.duo.uio.no/bitstream/handle/10852/50459/947_Paper.pdf?sequence=4&isAllow
https://aclanthology.org/2020.sltu-1.39.pdf
https://aclanthology.org/2020.sltu-1.39.pdf
https://aclanthology.org/2020.sltu-1.39.pdf
https://aclanthology.org/2020.sltu-1.39.pdf
https://aclanthology.org/2020.sltu-1.39.pdf
https://aclanthology.org/2020.sltu-1.39.pdf
https://aclanthology.org/2020.sltu-1.39.pdf

