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Abstract 
Machine translation has made significant progress in automating the conversion of human languages via computational 
methods. However, achieving human-level performance remains challenging, particularly for languages such as Amharic. This 
paper aims to bridge this gap by integrating prior knowledge, particularly the syntactic structure of the source language, into 
graph neural networks for English-to-Amharic machine translation. Our objective is to systematically evaluate the effectiveness 
of integrating source language syntactic information into GNNs to improve English to Amharic machine translation quality. We 
conduct a thorough review of the relevant literature and describe the preprocessing steps for both existing and newly collected 
parallel corpora used in training. Our approach involves preprocessing data and discussing the proposed Graph2Seq models. 
The experimental results demonstrate a notable 4.56% increase in the bilingual evaluation understudy (BLEU) score compared 
with the baseline score, indicating a significant improvement in translation quality. Moreover, our models exhibit a 1.98% 
enhancement in the BLEU score over previous attempts, highlighting the value of integrating syntactic information into graph 
neural networks. Through meticulous experimentation and analysis, we illustrate the efficacy of incorporating source language 
syntax into GNNs for enhancing English-to-Amharic machine translation. This study advances machine translation systems, 
particularly for low-resource languages, and lays the foundation for future research in integrating syntactic knowledge across 
diverse linguistic tasks and languages.

Keywords: Graph Neural Networks, English, Amharic Language, Syntactic of Source Language, Prior Knowledge, Machine 
Translation, BLEU Score

1. Introduction
Machine translation, the automated conversion of human 
languages via computational methods, has been the subject 
of extensive research and development in recent years. While 
significant progress has been made in improving translation 
quality and efficiency, the field continues to face challenges 
in achieving human-level performance. Researchers have 
proposed leveraging previous translation knowledge, 
such as syntactic language structures, to reinforce neural 
machine translation (NMT) systems [1,2]. Despite these 
advancements, current NMT systems predominantly 
rely on sequential encoder-decoder architectures, which 
often overlook the explicit consideration of syntax or the 
hierarchical nature of language [3-5]. This underutilization 
of syntactic information in NMTs can be attributed to the 
difficulty of effectively integrating structured linguistic 
information into neural encoders, especially recurrent 
neural networks (RNNs).

Acknowledging the cautionary insights of researchers such 
as is essential, as they highlight the ongoing challenge 

of attaining human-like translation quality [6]. Despite 
advancements in machine learning and natural language 
processing, machines still struggle to emulate the nuanced 
understanding and context sensitivity inherent in human 
translation. On the other hand, scholars have emphasized 
the importance of knowledge-based approaches in machine 
translation [7,8]. Emphasized the need to integrate domain-
specific knowledge and linguistic rules into translation 
systems to improve their accuracy and robustness. Similarly, 
the research of delves into the fusion of linguistic and 
worldly knowledge in meaning representation, advocating 
for a holistic approach to translation that goes beyond 
mere language processing [7]. Collectively, these studies 
underscore the pivotal role of integrating prior knowledge 
in machine translation. By providing syntactic information 
from the source language to encoder translation models, we 
can better understand and generate accurate translations. 
This holistic approach not only enhances translation quality 
but also lays the groundwork for advancing the capabilities 
of machine translation systems toward achieving human-
like performance.
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Attention-based NMT systems, proposed and use latent 
feature vectors to represent the words of the source 
sentence in the encoder [4,9,10]. These vectors are used 
for translation generation. Our objective is to automatically 
incorporate information about the syntactic relationships of 
the source language into the encoder, potentially improving 

the quality of the translation. Since the vectors correspond to 
words, it is logical to utilize a dependency syntax tree. Syntax 
dependency trees, shown in Figure 1, illustrate the syntactic 
relationships between words. In the example, "I" is the 
subject of the predicate "booked," and "ticket" is its object.

in machine translation. By providing syntactic information from the source language to encoder 

translation models, we can better understand and generate accurate translations. This holistic 

approach not only enhances translation quality but also lays the groundwork for advancing the 

capabilities of machine translation systems toward achieving human-like performance.

Attention-based NMT systems, proposed by Bastings et al. (2017), Bahdanau et al. (2014b) and 

Luong et al. (2015), use latent feature vectors to represent the words of the source sentence in the 

encoder. These vectors are used for translation generation. Our objective is to automatically 

incorporate information about the syntactic relationships of the source language into the encoder, 

potentially improving the quality of the translation. Since the vectors correspond to words, it is 

logical to utilize a dependency syntax tree. Syntax dependency trees, shown in Figure 1, 

illustrate the syntactic relationships between words. In the example, "I" is the subject of the 

predicate "booked," and "ticket" is its object.

Figure 1: Syntax dependency tree for the example sentence: “I booked a ticket to Adama”

We employ graph neural networks (GNNs) to create syntax-aware feature representations for 

words. This approach leverages the structural information within syntactic graphs to enhance the 

understanding of word relationships and dependencies, resulting in more accurate and 

contextually relevant feature representations (Bastings et al., 2017). By using GNNs, we can 

effectively capture and incorporate the intricate syntactic patterns present in the language, 

leading to improved performance of the machine translation model.

Research has underscored the effectiveness of integrating source language syntax as prior 

knowledge in graph neural networks (GNNs), resulting in notable improvements in natural 

language processing (NLP) overall and particularly in machine translation tasks (Bahdanau et al., 

Figure 1: Syntax Dependency Tree for the Example Sentence: I Booked a Ticket to Adama

We employ graph neural networks (GNNs) to create syntax-
aware feature representations for words. This approach 
leverages the structural information within syntactic graphs 
to enhance the understanding of word relationships and 
dependencies, resulting in more accurate and contextually 
relevant feature representations [4]. By using GNNs, we can 
effectively capture and incorporate the intricate syntactic 
patterns present in the language, leading to improved 
performance of the machine translation model. Research has 
underscored the effectiveness of integrating source language 
syntax as prior knowledge in graph neural networks (GNNs), 
resulting in notable improvements in natural language 
processing (NLP) overall and particularly in machine 
translation tasks [3-5]. These studies collectively highlight 
the significant potential of integrating source language 
syntax as prior knowledge in GNNs to increase performance 
levels in machine translation tasks.

Scholars have explored various methodologies for English-
to-Amharic machine translation. For example, researchers 
like [11-16] have employed statistical machine translation. 
And have also worked on phone-based statistical machine 
translation, while focused on phrase-based statistical 
approaches. Additionally, combined context-based machine 
translation (CBMT) with recurrent neural networks and 
investigated the impact of normalized Amharic phonemes 
using a transformer model [17,18]. However, to the best 
of our knowledge, no studies have attempted to integrate 
source language syntax and employ an attention-based 
graph-to-sequence methodology for English-to-Amharic 
machine translation.

The objective of this research is to explore the integration 
of prior knowledge, specifically the syntactic structure of 
the source language, into graph neural networks (GNNs) for 
English-to-Amharic machine translation. By incorporating 
syntactic information during the translation process, the aim 
is to increase the accuracy and fluency of machine-translated 
text, thereby enhancing the performance of English-to-
Amharic translation systems. We based our research on the 
findings of who utilized the transformer model and further 
refined it by fine-tuning it with the pretrained M2M100 
48 M, which served as a baseline translation system 

[18]. This approach offers a benchmark against which 
we can assess the performance of our translation model. 
By leveraging their methodology, we can systematically 
evaluate the effectiveness of the proposed modifications or 
enhancements.

Section II presents an in-depth review of the relevant 
literature, followed by Section III, which elaborates on 
both the existing parallel corpus and the recently acquired 
corpus from a distinct domain and delves into the syntactical 
encoder. The procedural steps involved in preprocessing 
both corpora are outlined in Section IV. Section V delves into 
the discussion of the proposed Graph2Seq models, while 
Section VI presents the outcomes of the experiments. Finally, 
Section VII concludes the paper, providing reflections on 
future research directions.

1.1. Related Work 
In this section, we explore the complexities of machine 
translation specifically tailored for the Amharic language. 
We shed light on the diverse approaches and challenges 
within this domain and the limited research dedicated to 
low-resource languages such as Amharic, largely due to the 
scarcity of parallel data [18]. Several approaches have been 
explored for translating Amharic to English, with differing 
levels of success. Achieved a BLEU score of 35.32% via the 
statistical machine translation (SMT) method, which was 
further elevated to 37.53% by incorporating phonemic 
transcription in 2020, conducted an evaluation of Amharic 
machine translation (MT) systems to assess their quality 
[14-20]. While the study revealed the potential of these 
systems, it also highlighted their relatively low BLEU scores. 
From an alternative perspective, these studies collectively 
underscore the potential for enhancing Amharic-English 
translation, particularly through the utilization of SMT and 
phonemic transcription methodologies.

Examined the effectiveness of employing a combination of 
context-based machine translation (CBMT) and recurrent 
neural network machine translation (RNNMT) for English–
Amharic translation [17]. Their study revealed that this 
hybrid approach outperformed simple neural machine 
translation (NMT) and delved into the impact of dictionaries 
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on translation quality. The findings showed that combining 
CBMT and RNNMT yielded enhanced translation results 
for English–Amharic translation, particularly with larger 
datasets such as the New Testament Bible. Additionally, the 
accuracy of the dictionary utilized by CBMT significantly 
influences the overall performance. Asserted that normalizing 
Amharic homophone characters can significantly augment 
the performance of Amharic-English machine translation in 
both directions [18]. Their study focused on a comprehensive 
Amharic-English parallel sentence dataset and examined the 
impact of Amharic homophone normalization on machine 
translation performance, with the objective of improving 
Amharic-English translation. The findings suggest that 
normalizing Amharic homophone characters leads to 
improved machine translation performance. Notably, the 
M2M-100 model outperforms the transformer-based 
models, and homophone normalization further enhances the 
performance of the NMT system.

In the domain of neural machine translation (NMT), the 
integration of prior knowledge emerges as a critical factor 
in augmenting translation quality. It plays a pivotal role 
in empowering systems to effectively manage lexical and 
syntactic ambiguity [21]. Additionally, the incorporation of 
similarity-aware NMT, which identifies promising sentences 
and leverages translation memory, has significantly reduced 
the workload of human translators [22]. Furthermore, 
recent investigations into the significance of context in NMT 
underscore the value of considering a broader unstructured 
context to enhance translation quality, as emphasized in 
studies such as [23]. In recent years, there has been a notable 
surge in interest regarding the application of graph neural 
networks (GNNs) in natural language processing (NLP), 
driven by their potential to capture the complex relationships 
and structures inherent in linguistic data. Scholars such as 
have made substantial contributions to this growing field 
through their comprehensive surveys, which offer detailed 
insights into the diverse subdomains of the NLP impacted by 
GNNs [24,25]. Their surveys meticulously categorize various 
areas of NLP research, ranging from sentiment analysis to 
machine translation, and explore how GNNs are employed 
within each domain. Moreover, they provide an overview of 
benchmark datasets and commonly used evaluation metrics 
tailored to GNN models, facilitating a deeper understanding 
of their performance and capabilities.

In particular, enriched the discourse by introducing a 
taxonomy of GNNs for NLP, delineating the research 
landscape into three main areas: graph construction, graph 
representation learning, and graph-based encoder-decoder 
models [23]. This framework offers a structured approach 
to understanding the diverse methodologies and techniques 
employed in GNN-based NLP research. Collectively, these 
research efforts highlight the growing importance of 
GNNs in NLP and underscore the need for continued 
research efforts to address the remaining challenges, such 
as scalability, interpretability, and generalization across 
different linguistic tasks and languages. Graph convolutional 
networks (GCNs) have emerged as a prominent 
methodology, leveraging predicted syntactic dependency 
trees of source sentences to generate word representations, 
or hidden states of the encoder, that incorporate syntactic 
neighborhood information. GCNs seamlessly integrate as 
layers into standard encoders, such as bidirectional RNNs 
or convolutional neural networks. An evaluation conducted 
through English–German and English–Czech translation 
experiments revealed substantial improvements over 
syntax-agnostic versions across all the setups. This approach 
underscores the potential of incorporating syntax-aware 
features to augment the capabilities of neural machine 
translation models [4].

2. Methodology
2.1. Parallel Dataset Preparation
The dataset used for training and evaluating English-to-
Amharic machine translation is a parallel corpus created 
by [18]. This corpus is larger than previous ones and is 
freely available for research purposes. It was used to train 
neural machine translation models. Importantly, the neural 
machine translation models, especially those using subword 
units, achieved the highest BLEU scores, demonstrating their 
exceptional performance in this task [13]. The following 
table illustrates that compiled the most extensive parallel 
corpus for English to Amharic language pairs. In addition 
to the datasets outlined in Table 1, also played a role in 
MT research by developing a novel parallel corpus [11,18]. 
This corpus consists of 33,955 sentence pairs sourced from 
various news platforms, including the Ethiopian Press 
Agency, Fana Broadcasting Corporate, and Walt Information 
Center. As the data are drawn from diverse sources, they 
encompass a wide range of domains, such as religious texts, 
politics, economics, sports, and news.

Data source # Sentence pairs Accessible
Am-En ELRA-W0074 13,347 Yes
Biadgligne, Y., & Smaïli, K. (2021) 225,304 Yes
Horn MT2 2,030 Yes
Am-En MT corpus3 53,312 Yes
(Gezmu et al., 2022) 145,364 Yes
Abate et al. (2018) 40,726 Yes
Lison & Tiedemann (2016) 562,141 Yes
Tracey & Strassel (2020) 60,884 No
Admasethiopia4 153 Yes
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MT Evaluation Dataset5 2,914 Yes
Destaw Belay et al. (2022) 33,955 Yes
Total 1,140,130 Yes
Unique sentence pairs 888,837 Yes

Table 1: Available Amharic and English Parallel Data

The dataset consists of approximately 1.1 million parallel 
sentences, with approximately 888,837 being distinct. 
This variation occurs because of duplicate sentences in the 
source materials. Notably, this collection of unique parallel 
sentences is the most extensive compilation achieved to 
date [18]. We have extensively used this dataset for our 
experimental endeavors.

2.2. Graph Neural Networks
Graph neural networks (GNNs) are a class of neural networks 
designed to perform machine learning tasks on graph-
structured data. Unlike traditional neural networks that 
operate on vector spaces, GNNs can capture the relationships 
and dependencies between entities represented as nodes 
and edges in a graph. GNNs play a crucial role in the 
Graph2Seq architecture, which is specifically designed to 
handle structured data represented as graphs and generate 
sequential outputs. Graph2Seq uses an encoder‒decoder 
framework that excels in machine translation. The GNN 
functions as the encoder, transforming the input graph 
composed of nodes and edges into node embeddings that 
capture both the structural and feature information of the 
graph. By aggregating information from neighboring nodes 
and iteratively updating node representations, the GNN 
effectively captures the topology and features of the graph.

The node embeddings generated by the GNN contain 
abundant information, representing the syntactic or 
structural characteristics of the graph. For tasks such as 
machine translation, these embeddings can encode the 
syntactic structure of a sentence, capturing dependencies 
and relationships between words. GNNs provide contextual 
embeddings for each node, taking into account the entire 
graph structure, which aids in capturing long-range 
dependencies and complex relationships. These contextual 
embeddings are vital for accurately generating sequences 
that are contextually relevant during the decoding phase.

2.3. Syntactic Encoder
In our proposed system, we seamlessly incorporate source 
language syntax into the translation process through the use 
of graph neural networks (GNNs). These GNNs are applied 

to the predicted syntactic dependency trees of the source 
sentences. Through this approach, the representations of 
words are made sensitive to their syntactic neighborhoods. 
This means that the relationships between words in a sentence, 
as represented by the syntactic dependency tree, are taken 
into account when encoding the source sentence. The GNNs 
within our system operate by taking word representations 
as inputs and producing word representations as outputs. 
They can be incorporated as layers into standard encoders, 
such as those on top of bidirectional RNNs or convolutional 
neural networks. This integration of syntax into the 
encoder allows the encoder to have access to rich syntactic 
information. Consequently, the encoder gains the flexibility 
to discern which aspects of syntax are beneficial to the 
machine translation task without imposing rigid constraints 
on their interaction. This adaptable approach ensures that 
the translation process remains dynamic and responsive 
to the intricacies of language structure. Overall, leveraging 
GNNs to incorporate syntactic information into the encoder 
enriches the translation process by harnessing the structural 
relationships among words in the source language sentences. 
This informed approach has the potential to improve 
translation quality by ensuring a deeper understanding of 
the underlying linguistic context.

2.4. The Proposed Graph2Seq Machine Translation Mod-
el
The overall structure of the sequence-to-sequence model 
(encoder-decoder), which is commonly used, is shown in 
Figure 1. This research aims to incorporate prior knowledge 
on the encoder side. Despite their versatility and capacity 
for expressive output, Seq2Seq models are constrained by 
a significant limitation: their applicability is limited to tasks 
with input data presented solely as sequences. However, 
sequences represent merely the fundamental form of 
structured data, while many critical problems demand a 
more sophisticated structure. For example, graphs, with 
their capacity to encapsulate intricate pairwise relationships 
within the data, are indispensable for addressing complex 
challenges [26]. Therefore, the proposed method uses a 
GNN, which enables us to embed prior knowledge, such as 
the syntax of the source language.

The overall structure of the sequence-to-sequence model (encoder-decoder), which is commonly 

used, is shown in Figure 1. This research aims to incorporate prior knowledge on the encoder 

side. Despite their versatility and capacity for expressive output, Seq2Seq models are constrained 

by a significant limitation: their applicability is limited to tasks with input data presented solely 

as sequences. However, sequences represent merely the fundamental form of structured data, 

while many critical problems demand a more sophisticated structure. For example, graphs, with 

their capacity to encapsulate intricate pairwise relationships within the data, are indispensable for 

addressing complex challenges (Xu et al., 2018). Therefore, the proposed method uses a GNN, 

which enables us to embed prior knowledge, such as the syntax of the source language.

Figure 2: Encoder-decoder model

In our study, the encoder we employ utilizes a syntactic dependency tree of the source language, 

which undergoes processing via graph neural networks (GNNs). The construction of our encoder 

involves a series of steps aimed at maximizing the utilization of this graph-based representation. 

First, we represent the input sentence as a graph structure. We then incorporate two layers to 

facilitate the learning of node representations, leveraging this graph representation. These node 

representations serve as the basis for generating the attention-based context vector, which is then 

passed to the decoder. Notably, our architecture employs the standard transformer decoder. By 

focusing exclusively on the states of textual nodes, our approach empowers the decoder to 

dynamically leverage contextual information, thereby enhancing its translation capabilities.

Figure 2: Encoder-Decoder Model
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In our study, the encoder we employ utilizes a syntactic 
dependency tree of the source language, which undergoes 
processing via graph neural networks (GNNs). The 
construction of our encoder involves a series of steps 
aimed at maximizing the utilization of this graph-based 
representation. First, we represent the input sentence as a 
graph structure. We then incorporate two layers to facilitate 
the learning of node representations, leveraging this graph 

representation. These node representations serve as the 
basis for generating the attention-based context vector, 
which is then passed to the decoder. Notably, our architecture 
employs the standard transformer decoder. By focusing 
exclusively on the states of textual nodes, our approach 
empowers the decoder to dynamically leverage contextual 
information, thereby enhancing its translation capabilities 
[27].

Figure 3: Transformer Encoder-Decoder architecture (source: Vaswani et al. (2017)); the
proposed English-to-Amharic machine translation architectureFigure 3: Transformer Encoder-Decoder Architecture; the Proposed English-to-Amharic Machine Translation 

Architecture

Figure 2 shows the main workflow of our study. The 
architecture consists of two main components: the encoder 
and the decoder. The encoder is responsible for processing 
the source language, which, in this case, is English, through 
multiple layers before passing it to the decoder. Conversely, 
the decoder receives input from the encoder and generates 
the target language, which in our context is Amharic. The 
preprocessed graph-based data undergo processing in an 
embedding layer before being fed into the stacked fusion 
layers. The first layer in the stack of fusion layers is the 
multihead self-attention layer. In this layer, self-attention 
mechanisms are used to generate contextual representations 
for each node, combining messages from neighboring nodes.

Formally, the contextual representations     of all textual 
nodes are calculated as follows 

where Multi Head (Q, K, V) is a multihead self-attention 
function that takes a query matrix Q, a key matrix K, and a 
value matrix V as inputs.

We also adopt positionwise feed forward networks 		
to generate textual node states 

where 		    denotes the above updated representations 
of all textual nodes.
On the side of the decoder, we employ a layer similar to the 
transformer decoder layer. In the method of Ld identical 
layers are stacked, where each layer l is made up of three 
sublayers, to create target-side concealed states [27]. To 
integrate the target and source-side contexts, the first two 
sublayers are masked self-attention and encoder-decoder 
attention:

where 	        denotes the target-side hidden states in the l-1-th 
layer. In particular,         are the embeddings of the input target 
words. Then, a positionwise fully connected forward neural 
network is used to produce        as follows:

Finally, the probability distribution of generating the target 
sentence is defined by using a Softmax layer, which takes the 
hidden states in the top layer as input: 
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(l) of all textual nodes are calculated as follows:
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where X is the input sentence, Y is the target sentence (i.e., 
the Amharic sentence in our case), and W and b are the 
parameters of the Softmax layer.

3. Experimental Setup and Results
3.1. Experimental
To validate the effectiveness of our proposed system, we 
conducted experiments employing the attention-based 
Graph2Seq model [26,28]. This model, renowned for its 
ability to capture syntactic dependency trees within graph 
structures, served as a robust framework for our evaluation. 
We employed Google Colab to train our English-to-Amharic 
translation models. This entailed partitioning parallel 
sentences for English and Amharic into three distinct sets: 
80% for training, 10% for validation, and 10% for testing 
purposes. We use the Adam optimizer with a learning rate 
of 0.001 [29]. The batch size is set to 32, and the hidden 
size is set to 128. We apply dropout with a probability of 
0.1 between layers. We train for 50 epochs. Assessing model 
performance relies on the bilingual evaluation under study 
(BLEU) metric [30]. Ranging from 0 to 1, the BLEU score 
gauges the resemblance between the translated output and 
the reference. A score of 1 signifies a flawless match, whereas 
0 denotes no matching words. In addition to the English-
Amharic dataset, we evaluated the proposed model using 
English-Tigrinya dataset. Both Tigrinya and Amharic are 
Ge’ez-scripted Semitic languages that are low-resource and 
share considerable morphological and lexical similarities 
[31]. For this experiment, we used a parallel dataset of 340K 
English-Tigrinya sentence pairs.

Transformer: we used the Open NMT framework in 
conjunction with TensorFlow deep learning to train 
Transformer sequence-to-sequence models specifically for 
English to Amharic NMT. The training process was conducted 
from scratch [32]. To tokenize the text, we employed Byte 
Pair Encoding a subword tokenization method [33]. Byte 
Pair Encoding acts as a data compression algorithm that 
replaces the most frequently occurring pair of consecutive 
bytes with a byte that does not appear in the data. The model 
was trained using various. parameters, including 512 hidden 
units, 6 layers, a learning rate of 0.0001, a maximum step of 
50K, a batch size of 32, and the Adam optimizer. Pre-trained 
model: To develop our bi-directional English-to-Amharic 
NMT system, we utilized the multilingual Facebook M2M-
100 pre-trained model with 418M parameters [34]. For 
fine-tuning, the training and validation were conducted with 
a maximum source and target length of 128 per device. We 
used a batch size of 4 and trained for 4 epochs.

Parameters, including 512 hidden units, 6 layers, a learning 
rate of 0.0001, a maximum step of 50K, a batch size of 32, 
and the Adam optimizer. Pre-trained model: To develop our 
bi-directional English-to-Amharic NMT system, we utilized 
the multilingual Facebook M2M-100 pre-trained model 
with 418M parameters [34]. For fine-tuning, the training 
and validation were conducted with a maximum source and 
target length of 128 per device. We used a batch size of 4 
and trained for 4 epochs. parameters, including 512 hidden 
units, 6 layers, a learning rate of 0.0001, a maximum step of 
50K, a batch size of 32, and the Adam optimizer.

3.2. Pre-Trained Model
To develop our bi-directional English-to-Amharic NMT 
system, we utilized the multilingual Facebook M2M-100 pre-
trained model with 418M parameters [34]. For fine-tuning, 
the training and validation were conducted with a maximum 
source and target length of 128 per device. We used a batch 
size of 4 and trained for 4 epochs.

4. Results and Discussion
In our experimental setup, we utilized a methodically 
normalized dataset, ensuring consistency and reliability 
across our analyses. Leveraging the syntactic source 
language, we use Graph2seq transformer models, capitalizing 
on their efficacy in capturing complex syntactic dependency 
tree patterns. To establish a robust benchmark, we engaged 
in meticulous fine-tuning on M2M100 418 M9, a state-of-
the-art pretrained language model tailored for English to 
Amharic translation. This step provided a solid foundation 
(baseline) for our subsequent evaluations.

Furthermore, we use the attention-based GNN2Seq model 
and Google Syntax Net, enriching the encoder with a 
syntactic dependency tree while maintaining the integrity 
of the decoder from the standard transformer architecture. 
This innovative approach allowed us to explore the nuanced 
influence of integrating syntax dependency into the graph 
neural networks of the encoder, revealing new insights into 
the interplay between syntactic structures and sequence 
generation. The following table shows the results.

Table 2 presents the results of three different translation 
models evaluated on the task of translating from English 
to Amharic and English to Tigrinya, with the performance 
metric being the BLEU score, which is a common metric used 
to evaluate the quality of machine-translated text. 

Model Direction Result (BLEU Score)
Transformer (English→Tigrinya) 12.69
M2M100 418 M (baseline) (English→Tigrinya) 15.59
GNN2Seq (with syntactic integration) (English→Tigrinya) 22.32
Transformer (English→Amharic) 13.06
M2M100 418 M (English→Amharic) 32.74
GNN2Seq (with syntactic integration) (English→Amharic) 37.3

Table 2: Experimental Results for the BLEU Score
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4.1. English→Tigrinya
we evaluated the performance of various machine 
translation models in translating from English to Tigrinya. 
The models considered include a standard Transformer 
model, the M2M100 418M model as a baseline, and the 
GNN2Seq model with syntactic integration. The transformer 
model achieved a BLEU score of 12.69, indicating that 
while it can perform the translation task, its accuracy and 
fluency are relatively low compared to more other models. 
In contrast, the M2M100 418M model, serving as the 
baseline, yielded a BLEU score of 15.59, which suggests a 
significant improvement over the Transformer model due 
to its more sophisticated architecture and larger training 
data. Moreover, the GNN2Seq model, which incorporates 
syntactic features into the translation process, achieved the 
highest BLEU score of 22.32, demonstrating a substantial 
improvement over both the Transformer and the baseline 
M2M100 418M models and highlighting the effectiveness of 
integrating syntactic information in enhancing translation 
quality. The comparative analysis of machine translation 
models for the English-to-Tigrinya language pair reveals that 
incorporating syntactic features into the translation process 
substantially enhances performance. The GNN2Seq model 
with syntactic integration outperforms both the Transformer 
model and the M2M100 418M model, achieving a BLEU 
score of 22.32. In comparing our results with the baseline, 
we observe a significant increase of 6.73% in the BLEU score, 
indicating a substantial improvement in translation quality. 
This improvement underscores the importance of leveraging 
linguistic structure in low-resource language translation 
tasks.

4.2. English→Amharic 
The Seq2Seq (Transformer) model achieved a BLEU score of 
13.06 while the pre-trained model achieved a BLEU score of 
32.74, whereas the GNN2Seq model, with syntax integration, 
outperformed and achieved a higher BLEU score of 35.3. 
The BLEU score is a measure of how closely the generated 
translation matches human-generated reference translations. 
A higher BLEU score indicates better translation quality, 
with scores above 30 generally considered to be indicative of 
relatively good translation performance. The improvement 
in the BLEU score from the Seq2Seq model to the GNN2Seq 
model suggests that incorporating syntax dependency tree 
into the graph neural networks of the encoder, as in the 
GNN2Seq model, leads to enhanced translation quality. 
This finding indicates that leveraging syntactic information 
during the translation process can improve the accuracy and 
fluency of the translated text. Additionally, the difference 
in BLEU scores between the two models provides valuable 
insight into the effectiveness of integrating syntactic 
information into neural machine translation models.

Table 3 summarizes various studies on machine translation 
between English and Amharic or related languages, 
comparing the datasets used, the methodologies applied, 
and the resulting BLEU scores. The methods range from 
traditional statistical machine translation (SMT) and phrase-
based SMT to more advanced neural machine translation 
(NMT) techniques and the use of pre-trained models like 
M2M100. The table also highlights the size of the datasets 
used in each study, showing a wide variation from as few as 
1,915 sentence pairs to over a million, as well as the BLEU 
scores that measure the quality of the translations produced.

Authors # Dataset used Method(s) BLEU score
Biadgligne & Smaïli (2022) 225,304 Neural machine translation 32.44
Abate et al. (2018) 40,726 Statistical machine translation 13.31
Teshome & Besacier (2012) 18,432 Phrase-based statistical machine translation 35.32
Ashengo et al. (2021) 8,603 Combination of context-based MT (CBMT) with RNN 11.34
Hadgu et al. (2020b) 1915 Google translate 9.6
Destaw Belay et al. (2022) 1,140,130 M2M100 418 M fine-tuning pre-trained model 32.74
Our work 1,140,130 Attention-based Graph2seq 37.3

Table 3: Previous Studies on English-Amharic Machine Translation Have Been Assessed in Terms of Dataset Size, 
Method(s) Used, and the BLEU Score Achieved
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6.

In comparing our results with the baseline, we observe a significant increase of 4.56% in the 

BLEU score, indicating a substantial improvement in translation quality. Additionally, as shown 

in Figure 3, our models demonstrate a noticeable improvement of 1.98% in the BLEU score 

compared with previous attempts. This remarkable enhancement can be largely attributed to the 

careful incorporation of syntactic nuances from the source language into the graph neural 

networks. By integrating such intricate linguistic structures, our approach enhances the model's 

comprehension of sentence syntax and semantics, thereby enabling more precise and fluent 

translations.

Conclusion and Future Work
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In comparing our results with the baseline, we observe a 
significant increase of 4.56% in the BLEU score, indicating a 
substantial improvement in translation quality. Additionally, 
as shown in Figure 3, our models demonstrate a noticeable 
improvement of 1.98% in the BLEU score compared with 
previous attempts. This remarkable enhancement can be 
largely attributed to the careful incorporation of syntactic 
nuances from the source language into the graph neural 
networks. By integrating such intricate linguistic structures, 
our approach enhances the model's comprehension of 
sentence syntax and semantics, thereby enabling more 
precise and fluent translations.

5. Conclusion and Future Work
In conclusion, this study highlights the importance of 
integrating prior knowledge, specifically source language 
syntax, into GNN machine translation systems. The 
incorporation of syntax-aware features in GNN-based models 
shows promise for enhancing translation quality, particularly 
for low-resource languages such as Amharic and Tigrinya. 
We have shown consistent BLEU score improvements for 
challenging English–Amharic and English-Tigrigna language 
pairs. Future research should further explore the potential of 
syntactic integration in improving translation performance 
in the translation direction across diverse linguistic tasks 
and languages, contributing to the advancement of machine 
translation toward human-like performance [35-37].
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