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Abstract
Background: Mono(2-ethylhexyl) phthalate (MEHP), a metabolite of di(2-ethylhexyl) phthalate (DEHP), stimulates 
peroxisome proliferator-activated receptors and disrupts carbohydrate and lipid metabolism. The oxidative stress generated 
may be closely related to the toxicity of DEHP. The authors report on the effects of simultaneous consumption of drinking 
water containing the hydroxyl radical scavengers’ ethanol or caffeine on diet-mediated DEHP toxicity.

Method: Four-week-old male SD rats were divided into control, DEHP, DEHP+ethanol and DEHP+caffeine groups (6 rats per 
group). The treatment groups were fed 1% (w/w) DEHP diet and tap water or 5% (v/v) ethanol or 0.05% (w/w) caffeine-
containing water for 1 week.

Result: Dietary exposure to DEHP resulted in a slight decrease in body weight, a significant decrease in testicular weight, 
and a significant increase in liver weight. There was a significant negative correlation between plasma MEHP concentration 
and final body weight of the rats; ethanol and caffeine administration slightly suppressed the decrease in testicular weight. 
The relative testicular weights (% of body weight) of the control and DEHP groups showed a strong negative correlation 
with testicular MEHP concentration. In contrast, the relative testicular weights of the DEHP+ethanol and DEHP + caffeine 
groups showed weak negative correlation with testicular MEHP concentration, and the slope of the regression line was more 
moderate than that of the control and DEHP alone groups. However, ethanol and caffeine administration did not significantly 
suppress the increase in liver weight.

Plasma glucose levels were significantly lower in the DEHP-only group than in the control group, but were slightly improved 
by ethanol or caffeine administration. Plasma lipid-related markers such as total cholesterol, high-density lipoprotein 
cholesterol, and triglycerides were lower in all DEHP-treated groups than in controls and were not improved by concurrent 
ethanol or caffeine administration.

Conclusion: Ethanol and caffeine were found to improve testicular atrophy and hypoglycemia caused by DEHP. This effect 
may be due to the oxidant scavenging ability of ethanol and caffeine. 
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1. Introduction
Di(2-ethylhexyl) phthalate (DEHP), the most widely used 
plasticizer for polyvinyl chloride, has now become a 
ubiquitous contaminant; DEHP has been shown in animal 
studies to adversely affect the testes, liver, kidney, and 
endocrine system, and there is concern that environmental 
exposure may adversely affect human health. Although the 
mechanism of toxicity is not fully understood, it is thought 
to be closely related to the fact that phthalate metabolite 
mono(2-ethylhexyl) phthalate (MEHP) stimulates 
peroxisome proliferator-activated receptors and disrupts 
the carbohydrate and lipid metabolic systems generating 

oxidative stress. The authors reported the effects of dietary 
DEHP exposure on testes, liver, and blood biochemical 
parameters in rats and the effects of concurrent consumption 
of drinking water containing the hydroxyl radical scavengers’ 
ethanol or caffeine [1-15].

2. Materials and Methods
2.1 Chemicals and Animal Diet 
DEHP, ethanol, caffeine was purchased from Wako pure 
chemical industries Ltd. (Osaka, Japan). The chemical 
purities of DEHP, ethanol and Caffeine were found to be 
>97%,>99.7% and 98.0%, respectively. CE-2 diets (Clea, 
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Tokyo, Japan) containing DEHP by 1 w/w% were prepared 
by Oriental Yeast Company (Chiba, Japan). MEHP was 
purchased from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). 
All other chemicals were the highest grade from commercial 
sources.

2.2 Animals and Ethics
Male Sprague-Dawley rats aged three-week-old purchased 
from Charles River (Kanagawa, Japan) were housed at the 
Laboratory Animal Center of Kagawa University. They were 
acclimated at 22–24 °C and 50–60% relative humidity with 
a 12-h light/dark cycle. The experiment protocols had the 
approval by the Kagawa University Animal Committee.

2.3 Experimental Design 
Four-week-old rats weighing 116.6 ± 3.4 g were divided 
into control and treatment groups (6 rats per group). The 
treatment group received 1% (w / w) DEHP feed and tap 
water, or 0.05% (w / w) water with caffeine, or 5% (v / v) 
ethanol water for 1 week. At the end of the experiment, rats 
were sacrificed under ether anesthesia. Testes, livers, and 
kidneys were removed and weighed. Testes were frozen 
at -40°C until MEHP analysis. Blood samples from the 
heart were collected in heparinized tubes, and plasma was 
separated from whole blood by centrifugation at 1500 g and 
frozen at -40°C until MEHP and biochemical parameters 
were determined.

2.4 Plasma and Testicular MEPH Analysis
The MEHP levels in organs and plasma were determined by 
high performance liquid chromatography [16-38]. 

2.5 Plasma Biochemical Parameter Measurements
Plasma levels of glucose, total cholesterol (HDL-C), low 
density lipoprotein cholesterol (LDL-C), high density 
lipoprotein cholesterol (TCH) and triglyceride (TG) were 
measured using an automated biochemical analyzer, Hitachi 
7600 (Hitachi, Japan).

2.6  Statistical Analysis
Results were expressed as means ± standard deviations 
(SD). Statistical analysis was performed by one-way ANOVA 

test followed by Dunnett's post analysis test for multiple 
comparisons. p <0.05 was considered as statistically 
significant.

3. Results
Table 1 shows body, organ weights, plasma and testicular 
MEHP concentrations for each treatment group; the DEHP 
treatment group gained less weight than the control group. 
Figure 1 shows a significant negative correlation between 
plasma MEHP concentration and final body weight: the DEHP 
treatment group had significantly heavier liver weight and 
significantly lighter testicular weight than the control group, 
while the DEHP diet and drinking water containing ethanol 
and caffeine slightly suppressed the decrease in testicular 
weight. However, ethanol and caffeine administration did 
not significantly suppress the increase in liver weight. There 
was no significant difference in kidney weight. The relative 
testicular weights (% of body weight) of the control and DEHP 
groups showed a strong negative correlation with testicular 
MEHP concentration. In contrast, the relative testicular 
weights of the DEHP+ethanol and DEHP+caffeine groups 
showed weak negative correlation with testicular MEHP 
concentration, and the slope of the regression line was more 
moderate than that of the control and DEHP groups (Figure 
2). DEHP doses estimated from food intake and mean body 
weight during the treatment period ranged from 0.9 to 1.0 
grams/kg/day in the DEHP administered groups.

Plasma biochemical parameters are shown in Table 2. 
Plasma glucose levels in the DEHP-treated group were 
significantly lower than those in the control group, but were 
slightly improved in the groups with simultaneous ethanol 
or caffeine intake. Plasma lipid-related markers such as TCH, 
LDL-C, HDL-C, and TG of all treatment groups on the DEHP 
diet were significantly and equally lower than controls [39, 
40].

Table 1. Body, organ weights, plasma and testicular MEHP 
concentrations. *p < 0.05, **p < 0.01, ***p < 0.001as compared 
to control. #p < 0.05, ##p < 0.01, ###p < 0.001 as compared 
to 1%DEHP-only group. BDL: below the detection limit. 
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Group   Control DEHP DEHP+Ethanol DEHP+Caffeine 
n 6 6 6 6

Initial body weight (g) mean 116.5  
 

118.3 
 

118.3 
 

113.8 
  SD 3.4  3.1 2.8 2.2 

Final body weight (g) mean 181.8  
 

169.0 
 

168.6 
 

170.0 
  SD 10.3  3.9 11.6 7.0 

Testes (g) mean 1.62  ###
0.99 

***
1.20 

*
1.12 

** SD 0.10  0.24 0.19 0.31 

Relative testicular 
weight (%) 

mean 0.90  ###
0.58 

***
0.71 

*
0.65 

** SD 0.08  0.14 0.08 0.17 

Kidneys weight (g) mean 1.74  
 

1.62 
 

1.71 
 

1.70 
  SD 0.13  0.12 0.11 0.15 

Relative kidney weight 
(%) 

mean 0.96  
 

0.96 
 

1.02 
 

1.00 
  SD 0.06  0.09 0.11 0.06 

Liver (g) mean 8.90  ###
12.97 

***:
12.11 

**:
13.14 

***: SD 0.96  0.39 1.45 0.66 

Relative liver weight 
(%) 

mean 4.89  ###
7.68 

***
7.17 

***
7.72 

*** SD 0.33  0.18 0.59 0.14 

Plasma MEHP (μg/ml) 
mean 

BDL 
45.4  53.4  31.9 # 

SD 10.6  10.5  10.9   
Testicular MEHP 

(μg/g) 
mean 

BDL 
8.1   6.8   5.2    

SD 1.2   1.8   2.4    
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Group   Control DEHP DEHP+Ethanol DEHP+Caffeine 
n 6 6 6 6 

Glucose (mg/dl) mean 171.5  #
72.7 

*
117.2 

 
97.0  

  SD 46.8  34.3 40.2 10.2  
TC (mg/dl) mean 87.8  ##

66.8 
**

58.2 
**

64.8  ** SD 13.9  12.5 5.6 7.5  
HDL-C (mg/dl) mean 34.2  ###

24.2 
***

23.8 
***

25.5  *** SD 5.8  2.6 2.3 2.8  
TG (mg/dl) mean 84.8  ###

30.8 
***

25.5 
***

30.2  
*** SD 43.8  3.7 6.9 3.5  

 
 
4. Discussion 
 
Orally administered DEHP is rapidly metabolized to MEHP by lipase in the gastrointestinal tract [39, 40]. 
MEHP stimulates peroxisome proliferator-activated receptors, disrupting carbohydrate and lipid 
metabolism and generating oxidative stress [21-32]. Dietary exposure to DEHP resulted in a slight 
decrease in body weight, a significant decrease in testicular weight, and a significant increase in liver 
weight. The body weight suppression and testicular atrophy observed in this experiment were both 
MEHP-dependent, and therefore may be the result of oxidative stress generated by MEHP. 
MEHP-induced oxidative stress may damage thyroid tissue and reduce thyroid hormones, which play an 
important role in the process of skeletal muscle formation [41-44]. The weight loss may be due to 
MEHP-induced thyroid dysfunction. However, simultaneous administration of hydroxyl radical 
scavengers, ethanol, and caffeine, improved testicular atrophy but not body weight suppression. This 
suggests that the weight suppression is not due to MEHP-induced hydroxyl radicals. It also indicates that 
the increase in liver weight is merely the result of MEHP-stimulated peroxisome proliferation. Plasma 
glucose, TCH, LDL-C, HDL-C, and TG were significantly lower in the DEHP-exposed group. 
Administration of ethanol and caffeine slightly improved DEHP-induced hypoglycemia. MEHP-induced 
PPAR-γ promotes lipid metabolism, and the generated reactive oxygen species may promote insulin 
secretion [45-48]. Hydroxyl radical scavengers ethanol and caffeine may regulate insulin hypersecretion 
and prevent tissue damage caused by hypoglycemia-induced oxidative stress [49, 50]. 
 
5. Conclusion 
Ethanol and caffeine were found to improve testicular atrophy and hypoglycemia caused by DEHP. This 
effect may be due to the oxidant scavenging ability of ethanol and caffeine.   
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