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Abstract
In this extensive computational study, we investigate the dynamics of cosmic ray diffusion across three distinct 
spatial dimensions: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) scenarios. Utilizing 
the fundamental heat equation, we explore the dispersion of cosmic ray density over time, guided by varying initial 
conditions and boundary constraints. Through a series of numerical simulations, we visualize and analyse the intricate 
interplay between cosmic ray behaviour and the spatial and dimensional contexts in which it unfolds. Our findings 
reveal a rich tapestry of cosmic ray diffusion patterns. The simulations highlight the pivotal role of initial conditions, 
boundary conditions, and spatial dimensions in shaping the distribution and propagation of cosmic rays. Gaussian-like 
initial conditions, centred at different points and endowed with specific standard deviations, lead to diverse diffusion 
profiles. Dirichlet and Neumann boundary conditions dictate how cosmic rays interact with system boundaries, further 
influencing their trajectories. This comprehensive exploration of cosmic ray diffusion extends our understanding of this 
phenomenon, offering critical insights into its behaviour across multidimensional environments. Beyond fundamental 
scientific inquiry, these results have implications for astrophysics, particle physics, and the broader realm of scientific 
research. By integrating data from nine distinct graphs, this study forms a holistic perspective on cosmic ray diffusion, 
providing a foundation for continued investigations into its complex dynamics and their broader scientific significance.

Keywords: Cosmic Ray Diffusion, Multidimensional Analysis, Simulation Insights, Boundary Constraints, Scientific 
Significance, Dirichlet Conditions and Neumann Boundary Condition.

Published:  2024 June 01

Review Article

1. Introduction 
Cosmic rays, composed of high-energy particles originating from outer space, constitute a fascinating and enigmatic 
phenomenon that has captivated scientists across multiple disciplines [1, 2]. Understanding the spatial distribution and 
diffusion of cosmic rays is a complex challenge that spans one-dimensional (1D), two-dimensional (2D), and three-dimensional 
(3D) domains [3]. This study embarks on an exploration of cosmic ray diffusion through these diverse dimensions, driven by 
the fundamental heat equation [4, 5]. The research not only aims to unravel the intricate dynamics of cosmic rays but also 
employs numerical simulations as a key methodology to achieve this understanding [6].

Our investigation employs a suite of numerical techniques and mathematical models to simulate the diffusion of cosmic rays. 
From finite-difference schemes to mesh grid-based computations, our methods embrace the complexities inherent in cosmic 
ray behaviour. By manipulating initial conditions such as Gaussian-like distributions and integrating boundary conditions, 
we scrutinize the interplay of cosmic rays with their environment [5]. The insights gleaned from these simulations offer a 
comprehensive perspective on cosmic ray diffusion in multidimensional space and its relevance to various scientific domains.

This study combines theoretical foundations, numerical simulations, and data visualization to present a holistic view of 
cosmic ray diffusion phenomena. The ensuing exploration will illuminate not only the behaviour of cosmic rays but also the 
broader scientific implications of this research across the fields of astrophysics, particle physics, and natural systems.

2. Numerical Simulations as a Key Methodology
Numerical simulations stand as the cornerstone of our approach to comprehending cosmic ray diffusion. By translating the 
governing heat equation into computational algorithms, we can replicate the dynamic behaviour of cosmic rays over time 
and within different spatial dimensions. This computational framework enables us to investigate scenarios that span from 
the concentrated diffusion of 1D models to the complex spatial dynamics of 3D environments. Leveraging finite-difference 
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schemes, mesh grid-based computations, and sophisticated algorithms, we meticulously track the trajectories and density 
variations of cosmic rays, capturing the essence of their diffusion phenomena [3].

Techniques Employed for Cosmic Ray Study
The techniques employed in this research extend beyond numerical simulations to encompass a multidisciplinary toolkit. 
Visualization techniques, including iso-surface plots and 3D renderings, provide clear and intuitive representations of cosmic 
ray density distributions. Mathematical techniques, such as solving partial differential equations, form the mathematical 
foundation of our modelling approach. Additionally, data analysis and parameter sensitivity studies are carried out to delve 
deeper into the intricacies of cosmic ray diffusion behaviour [4]. Collectively, these techniques form a comprehensive arsenal 
for unravelling the mysteries of cosmic ray diffusion.

Scientific Relevance and Broader Implications
This study is not only a scientific endeavour into cosmic ray diffusion but also holds broader implications for various 
scientific domains. The understanding gained from these simulations can shed light on cosmic ray behaviour in astrophysical 
environments, elucidating their influence on celestial bodies and their magnetic fields. In the realm of particle physics, 
insights into cosmic ray diffusion are invaluable for particle detectors and cosmic-ray-related experiments. Furthermore, 
the study has relevance in understanding diffusion processes within natural systems, where the principles governing cosmic 
ray behaviour can be applied to diverse phenomena. As we embark on this multidimensional exploration of cosmic rays, 
the knowledge uncovered holds the potential to advance our understanding of the universe and its underlying physical 
processes.

Mathematical Model
The heat equation, also known as the diffusion equation, describes the diffusion or spreading of a quantity, such as heat, over 
time. It can be applied to various physical phenomena, including the behaviour of cosmic rays. The heat equation in one, two, 
and three dimensions can be written as follows

One-Dimensional Heat Equation
In one dimension, the heat equation describes the propagation of cosmic rays along a straight line. Let’s denote the cosmic 
ray density or flux as ρ (x, t), where x is the spatial coordinate and it is time. The one-dimensional heat equation [1] is given 
by:

1.1. Numerical Simulations as a Key Methodology 

Numerical simulations stand as the cornerstone of our approach to comprehending cosmic ray diffusion. 
By translating the governing heat equation into computational algorithms, we can replicate the dynamic 
behaviour of cosmic rays over time and within different spatial dimensions. This computational 
framework enables us to investigate scenarios that span from the concentrated diffusion of 1D models 
to the complex spatial dynamics of 3D environments. Leveraging finite-difference schemes, mesh grid-
based computations, and sophisticated algorithms, we meticulously track the trajectories and density 
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such as solving partial differential equations, form the mathematical foundation of our modelling 
approach. Additionally, data analysis and parameter sensitivity studies are carried out to delve deeper 
into the intricacies of cosmic ray diffusion behaviour [4]. Collectively, these techniques form a 
comprehensive arsenal for unravelling the mysteries of cosmic ray diffusion. 

1.3. Scientific Relevance and Broader Implications 

This study is not only a scientific endeavour into cosmic ray diffusion but also holds broader 
implications for various scientific domains. The understanding gained from these simulations can shed 
light on cosmic ray behaviour in astrophysical environments, elucidating their influence on celestial 
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Here, ∂ρ/∂t represents the rate of change of cosmic ray density with respect to time, ∂²ρ/∂x² represents 
the second derivative of cosmic ray density with respect to spatial coordinate x, and D is the cosmic ray 
diffusion coefficient. 

To solve the one-dimensional heat equation (1) with appropriate initial and boundary conditions, we 
can use the method of separation of variables. We'll assume that the cosmic ray density ρ depends on 
both time (t) and position (x) and can be separated into two functions, one that depends only on time 
and another that depends only on position: 
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Now, we’ll divide both sides by T(t)X(x):

Since the left-hand side depends only on time (t) and the right-hand side depends only on position (x), both sides must be 
equal to a constant, which we’ll call -λ (a negative constant for mathematical convenience). So, we have:
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Now, let's solve each of these ordinary differential equations separately. Equation (5) is a first-order 
ordinary differential equation with the solution. Solve for T(t) to get 

T(t) = A * e(-λt)     (6) 

Here, A is an arbitrary constant. 

Now, solving for X(x)       

The equation (5) is a second-order ordinary differential equation. The solutions to this equation depend 
on the boundary conditions. Let's consider two common cases 

2.1.1. Fixed Ends (Dirichlet Boundary Conditions) 
In this case, we have boundary conditions, say, X(0) = 0 and X(L) = 0, where L is the length of the 
system. The solutions are sine functions [7] 

X(x) = B * sin(  * x)    (7) 

Here, B is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation. 

we can apply the boundary conditions, X(0) = B * sin(0) = 0 implies B = 0. X(L) = B * sin(  * L) = 0 
implies πn = πn, which is always true. 

2.1.2. Insulated Ends (Neumann Boundary Conditions) 

In this case, we have boundary conditions    = 0 at both ends, meaning no flux through the boundaries. 
The solutions are cosine functions: 

X(x) = C * cos(  * x)    (8) 

Again, C is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation. 

Now, we have the general solution for X(x) and T(t). Combining these solutions 

ρ(x, t) = (A * B) * e(-λt) * sin(  * x) [for Dirichlet Conditions]  (9) 

or 

ρ(x, t) = (A * C) * e(-λt) * cos(  * x) [for Neumann Conditions]  (10) 
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Now, let's solve each of these ordinary differential equations separately. Equation (5) is a first-order ordinary differential 
equation with the solution. Solve for T(t) to get

Here, A is an arbitrary constant.
Now, solving for X(x)      
The equation (5) is a second-order ordinary differential equation. The solutions to this equation depend on the boundary 
conditions. Let’s consider two common cases

2.1.1. Fixed Ends (Dirichlet Boundary Conditions)
In this case, we have boundary conditions, say, X(0) = 0 and X(L) = 0, where L is the length of the system. The solutions are 
sine functions [7]

Here, B is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation.
we can apply the boundary conditions, X(0) = B * sin(0) = 0 implies B = 0. X(L) = B * sin(πn/L  * L) = 0 implies πn = πn, which 
is always true.

2.1.2. Insulated Ends (Neumann Boundary Conditions)

In this case, we have boundary conditions  ∂X/∂x  = 0 at both ends, meaning no flux through the boundaries. The solutions 
are cosine functions:

Again, C is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation.
Now, we have the general solution for X(x) and T(t). Combining these solutions

let’s determine the values of the constants A, B (or C), and λ by applying initial conditions and matching boundary conditions 
for the one-dimensional heat equation:

The general solution we found earlier is

Now, let’s apply initial conditions and match boundary conditions

We need the initial distribution of cosmic rays at time t = 0, which can be given as ρ (x, 0) = f(x), where f(x) is some known 
function.

So, we can express A in terms of the initial distribution function f(x)

Substituting this into equation (1), we get 
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Here, f(x) represents the initial distribution of cosmic rays at time t=0, and λ is a constant determined by the separation of 
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2.1.3. Case 1: Dirichlet Boundary Conditions
Dirichlet boundary conditions specify fixed values at the boundaries. Let’s say we have the following conditions, Initial 
Condition,     

Now, we can determine the value of λ using the separation of variables method:

We already found that X(x) satisfies Dirichlet boundary conditions
X(0)=0 and X(1)=0. These conditions are satisfied by X(x)=sin(nπx), where n is a positive integer.
Next, we apply the initial condition

This means A = sin(πx). Now, we have all the components to construct the final solution:

The value of λ depends on the specific value of n chosen to satisfy the boundary conditions. The solution for ρ(x, t) is a series 
with different n, and you can calculate the values of λ and coefficients for each mode based on the initial condition.

2.1.4. Case 2: Neumann Boundary Conditions
Neumann boundary conditions specify zero flux at the boundaries. Let’s say we have the following conditions, Initial 
Condition  [8],

2.1.3. Case 1: Dirichlet Boundary Conditions 

Dirichlet boundary conditions specify fixed values at the boundaries. Let's say we have the following 
conditions, Initial Condition,      

 f(x)=sin(πx)     (20) 
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2.1.3. Case 1: Dirichlet Boundary Conditions 
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As before, the value of λ depends on the specific value of n chosen to satisfy the boundary conditions. The solution for ρ(x ,t) 
is a series with different n, and you can calculate the values of λ and coefficients for each mode based on the initial condition.

In both cases, the final solution represents how the cosmic ray density evolves over time in the given one-dimensional 
system with the provided initial and boundary conditions. The exact form of the solution depends on the specific initial 
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Figure 1: Dirichlet Boundary Conditions with f(x)=sin(πx) 

2.2. Results and discussions 
2.2.1. Case 1: Dirichlet Boundary Conditions with f(x)=sin(πx) 

In this case, we have Dirichlet boundary conditions, which means the cosmic ray density is fixed at zero 
at both ends of the system. The initial condition f(x)=sin(πx) represents an initial distribution of cosmic 
rays that is concentrated near the centre of the system. As time progresses, we observe that the initial 
concentration of cosmic rays near the centre of the system starts to spread outwards. The density 
decreases over time, indicating that cosmic rays are dispersing through diffusion. 

"Cosmic Ray Density Evolution - Dirichlet Boundary Conditions" describes the scenario where the 
cosmic ray density is constrained at the boundaries, leading to the observed behaviour. 

2.2.2. Conclusion 

The choice of boundary conditions significantly influences the behaviour of cosmic ray density. 
Dirichlet boundary conditions (fixed ends) lead to the dispersion of cosmic rays throughout the system, 
as they are constrained to remain within the boundaries. Neumann boundary conditions (insulated ends) 
result in different behaviours, depending on the initial conditions. 

Figure 1: Dirichlet Boundary Conditions with f(x)=sin(πx)

Results and Discussions
Case 1: Dirichlet Boundary Conditions with f(x)=sin(πx): 
In this case, we have Dirichlet boundary conditions, which 
means the cosmic ray density is fixed at zero at both ends of 
the system. The initial condition f(x)=sin(πx) represents an 
initial distribution of cosmic rays that is concentrated near 
the centre of the system. As time progresses, we observe that 
the initial concentration of cosmic rays near the centre of 
the system starts to spread outwards. The density decreases 
over time, indicating that cosmic rays are dispersing 
through diffusion. "Cosmic Ray Density Evolution - Dirichlet 

Boundary Conditions" describes the scenario where the 
cosmic ray density is constrained at the boundaries, leading 
to the observed behaviour.

Conclusion: The choice of boundary conditions significantly 
influences the behaviour of cosmic ray density. Dirichlet 
boundary conditions (fixed ends) lead to the dispersion of 
cosmic rays throughout the system, as they are constrained 
to remain within the boundaries. Neumann boundary 
conditions (insulated ends) result in different behaviours, 
depending on the initial conditions.
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Figure 2: Neumann Boundary Conditions with f(x)=cos(πx) 

2.2.3. Case 2: Neumann Boundary Conditions with f(x)=cos(πx) 
In this case, we have Neumann boundary conditions, meaning there is zero flux (no flow) of cosmic 
rays at both ends of the system. The initial condition f(x)=cos(πx) represents an initial distribution of 
cosmic rays that is centred near the middle of the system. The initial concentration of cosmic rays near 
the middle of the system remains relatively stable. Over time, minor fluctuations in density occur, but 
the overall distribution remains centred. 

"Cosmic Ray Density Evolution - Neumann Boundary Conditions (f(x) = cos(πx))" indicates that under 
Neumann conditions, the density evolves with minimal changes in boundary behaviour, maintaining a 
centred distribution. 

2.2.4. Conclusion 
Neumann boundary conditions, where there is zero flux at both boundaries, lead to different behaviour. 
In this case, the initial distribution f(x)=cos(πx)) remains relatively stable over time with minor 
fluctuations. The system preserves the central concentration of cosmic rays, resulting in a stable 
distribution. 

Figure 2: Neumann Boundary Conditions with f(x)=cos(πx).

Figure 3: Neumann Boundary Conditions with f(x)=cos(2πx).

Case 2: Neumann Boundary Conditions with f(x)=cos(πx): In this case, we have Neumann boundary conditions, meaning 
there is zero flux (no flow) of cosmic rays at both ends of the system. The initial condition f(x)=cos(πx) represents an initial 
distribution of cosmic rays that is centred near the middle of the system. The initial concentration of cosmic rays near the 
middle of the system remains relatively stable. Over time, minor fluctuations in density occur, but the overall distribution 
remains centred. "Cosmic Ray Density Evolution - Neumann Boundary Conditions (f(x) = cos(πx))" indicates that under 
Neumann conditions, the density evolves with minimal changes in boundary behaviour, maintaining a centred distribution.

Conclusion: Neumann boundary conditions, where there is zero flux at both boundaries, lead to different behaviour. In this 
case, the initial distribution f(x)=cos(πx)) remains relatively stable over time with minor fluctuations. The system preserves 
the central concentration of cosmic rays, resulting in a stable distribution.

 

Figure 3: Neumann Boundary Conditions with f(x)=cos(2πx) 

2.2.5. Case 3: Neumann Boundary Conditions with f(x)=cos(2πx) 
This case also involves Neumann boundary conditions, but with a different initial condition, 
f(x)=cos(2πx), representing a more oscillatory initial distribution. The initial oscillatory pattern in the 
cosmic ray density remains present throughout the simulation. The density evolves with waves 
propagating through the system, maintaining the oscillatory nature. 

"Cosmic Ray Density Evolution - Neumann Boundary Conditions (f(x) = cos(2πx))" specifies that 
under Neumann conditions, the density retains its oscillatory characteristics over time. 

2.2.6. Conclusion 
Similar to Graph 2, Neumann boundary conditions are applied, but with a different initial condition 
f(x)=cos(2πx)). The system exhibits an oscillatory behaviour, maintaining the oscillations present in 
the initial distribution. Waves of cosmic ray density propagate through the system, reflecting the 
oscillatory nature of the initial condition. 
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Here,        represents the rate of change of cosmic ray density with respect to time, and        and         represent the second 
derivatives of cosmic ray density with respect to the spatial coordinates x and y, respectively. Let's assume that the cosmic 
ray density ρ depends on both time (t) and two spatial coordinates (x and y) and can be separated into three functions, one 
for time and two for each spatial dimension

Now, let’s substitute this separation into the 2D heat equation

Since the left side depends only on time (t), and the right side depends only on spatial coordinates (x and y), both sides must 
be equal to a constant, which we’ll call -λ² (a negative constant for mathematical convenience)

Now, let’s solve each of these ordinary differential equations separately

Solving for T(t): The 3quation (33a) is a first-order ordinary differential equation with the solution

Here, A is an arbitrary constant.

Solving for X(x): The equation (33b) is a second-order ordinary differential equation, and its solution depends on the 
boundary conditions

Fixed Ends (Dirichlet Boundary Conditions): In this case, we have boundary conditions, say, X (0) = 0 and X(L) = 0, where 
L is the length of the system. The solutions are sine functions

Here, B is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation.

Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary conditions ∂X/∂x = 0 at both ends. The 
solutions are cosine functions.

Case 3: Neumann Boundary Conditions with f(x)=cos(2πx): This case also involves Neumann boundary conditions, but 
with a different initial condition, f(x)=cos(2πx), representing a more oscillatory initial distribution. The initial oscillatory 
pattern in the cosmic ray density remains present throughout the simulation. The density evolves with waves propagating 
through the system, maintaining the oscillatory nature. "Cosmic Ray Density Evolution - Neumann Boundary Conditions 
(f(x) = cos(2πx))" specifies that under Neumann conditions, the density retains its oscillatory characteristics over time.

Conclusion: Similar to Graph 2, Neumann boundary conditions are applied, but with a different initial condition 
f(x)=cos(2πx)). The system exhibits an oscillatory behaviour, maintaining the oscillations present in the initial distribution. 
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position (x, y) and time t. The two-dimensional heat equation is [9]
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represent the second derivatives of cosmic ray density with respect to the spatial coordinates x and y, 
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Since the left side depends only on time (t), and the right side depends only on spatial coordinates (x 
and y), both sides must be equal to a constant, which we'll call -λ² (a negative constant for mathematical 
convenience) 
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Now, let's solve each of these ordinary differential equations separately 

3.1. Solving for T(t) 

The 3quation (33a) is a first-order ordinary differential equation with the solution 

T(t)=A𝑒𝑒�����     (34) 

Here, A is an arbitrary constant. 

3.2. Solving for X(x):  
The equation (33b) is a second-order ordinary differential equation, and its solution depends on the 
boundary conditions 

3.2.a. Fixed Ends (Dirichlet Boundary Conditions):  

In this case, we have boundary conditions, say, X(0) = 0 and X(L) = 0, where L is the length of the 
system. The solutions are sine functions 

X(x) = B.sin( ��
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Here, B is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation. 
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In this case, we have boundary conditions ∂X/∂x = 0 at both ends. The solutions are cosine functions. 

X(x) = C. cos (��
�

 x)     (36) 

Again, C is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation. 

3.3. Solving for Y(y):  
�
�
 Y′′ = −λ2     (37) 

This equation is identical to the equation for X(x), and therefore, the solutions for Y(y) will be the same 
as for X(x) with the same boundary conditions. 

Now, we can combine the solutions for T(t), X(x), and Y(y) to get the general solution for ρ(x, y, t): 

ρ(x, y, t) = A𝑒𝑒�����X(x)⋅Y(y)    (38) 

To determine the values of the constants A, B (or C), and λ² by applying initial conditions and matching 
boundary conditions for the two-dimensional heat equation: 

Now, let's apply the initial conditions and boundary conditions to find the values of these constants. 

3.4. Initial Condition 

The initial condition provides the initial distribution of cosmic rays at time t=0, which can be given as 
ρ(x, y, 0) = f(x, y), where f(x, y) is some known function. 

3.4.a. Applying Initial Condition:  

ρ(x, y, 0) = A⋅X(x)⋅Y(y) = f(x, y)    (39) 

This means      A = ���,��
����⋅����

     (40) 

3.5. Boundary Conditions: 

The specific boundary conditions depend on the problem at hand. Let's consider two common cases: 

3.5.a. Fixed Ends (Dirichlet Boundary Conditions): In this case, we have boundary conditions: 

X (0)=0 

X(Lx)=0 (assuming the system has a length Lx in the x-direction) 

Y(0)=0 

Y(Ly)=0 (assuming the system has a length Ly in the y-direction)  (41) 

Using the solutions for X(x) and Y(y) for Dirichlet boundary conditions, we have: 

X(x) = B.sin( ��
��

 x)     (42) 

Y(y) = C.sin( ��
��

 y)    (43) 

Substituting these into the initial condition 
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Here, n and m are positive integers corresponding to the modes of oscillation in the x and y directions. 
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Again, C is an arbitrary constant, and n is a positive integer corresponding to the mode of oscillation.
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This equation is identical to the equation for X(x), and therefore, the solutions for Y(y) will be the same as for X(x) with the 
same boundary conditions. Now, we can combine the solutions for T(t), X(x), and Y(y) to get the general solution for ρ (x, y, t):
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for the two-dimensional heat equation: Now, let's apply the initial conditions and boundary conditions to find the values of 
these constants.

Initial Condition
The initial condition provides the initial distribution of cosmic rays at time t=0, which can be given as ρ (x, y, 0) = f (x, y), 
where f (x, y) is some known function.
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Boundary Conditions: The specific boundary conditions depend on the problem at hand. Let’s consider two common cases:

Fixed Ends (Dirichlet Boundary Conditions): In this case, we have boundary conditions:

Substituting these into the initial condition

Here, n and m are positive integers corresponding to the modes of oscillation in the x and y directions.

Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary conditions:3.5.b. Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary conditions: 
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      ��
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      ��
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      ��
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�𝐿𝐿�� = 0     (45) 

Using the solutions for X(x) and Y(y) for Neumann boundary conditions, we have 
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Substituting these into the initial condition 
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Again, n and m are positive integers corresponding to the modes of oscillation in the x and y directions. 

Once you have determined the values of A, B (or C), and λ² using the initial condition and boundary 
conditions we get 

f(x, y) = sin ���
 ��

 � . sin� ��
��

 �    (49) 

Now, we can substitute this initial condition into the expression for A 

    A = 
������ ��

 �.���� ����
 �

�.���� ����
 ����.���� ���� ��

       (50) 

With A determined, we can write the final solution for ρ(x, y, t): 

ρ(x ,y, t) = 
������ ��

 �.���� ����  �

�.���� ����
 ����.���� ���� ��

 . 𝑒𝑒����� . B sin ���
 ��

x �. C .sin( ��
��

 y)  (51) 

Now, we can simplify this expression by cancelling out terms 

ρ(x, y, t) = sin ���
 ��

 � . sin� ��
��

 �𝑒𝑒�����    (52) 

This is the final solution for the cosmic ray density ρ(x, y, t) in the given two-dimensional system with 
Dirichlet boundary conditions and the specific initial condition provided. The solution represents how 
the cosmic ray density evolves over time in this particular scenario. 
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In Case 1, we assumed Dirichlet boundary conditions (fixed ends) and used a specific initial condition 

f(x, y)= sin
 

 . sin   . The initial cosmic ray density distribution is a product of two sine 

functions in the x and y directions. As time progresses, the cosmic ray density spreads out from its initial 
concentration due to diffusion-like behaviour. The concentration of cosmic rays decreases over time. 
The boundary conditions prevent cosmic rays from escaping the system, causing them to interact with 
the boundaries and disperse. 

Conclusions 

Under Dirichlet boundary conditions, the cosmic ray density exhibited dispersion behaviour. The initial 
concentrated distribution spread out and diffused throughout the system over time. The cosmic ray 
density decreased as it dispersed, ultimately reaching a uniform distribution. Dirichlet conditions led to 
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Results and Discussion
Dirichlet Boundary Conditions with Specific Initial Condition: In Case 1, we assumed Dirichlet boundary conditions (fixed 
ends) and used a specific initial condition:     . The initial cosmic ray density distribution is a product of two 
sine functions in the x and y directions. As time progresses, the cosmic ray density spreads out from its initial concentration 
due to diffusion-like behaviour. The concentration of cosmic rays decreases over time. The boundary conditions prevent 
cosmic rays from escaping the system, causing them to interact with the boundaries and disperse.

Conclusions: Under Dirichlet boundary conditions, the cosmic ray density exhibited dispersion behaviour. The initial 
concentrated distribution spread out and diffused throughout the system over time. The cosmic ray density decreased as 
it dispersed, ultimately reaching a uniform distribution. Dirichlet conditions led to cosmic rays being confined within the 
boundaries, causing them to interact with the boundaries and disperse.
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Figure 5: Cosmic Ray Density Evolution: Neumann Boundary Conditions with Custom Initial Condition.

Results and Discussion: We assumed Neumann boundary 
conditions (insulated ends) and used a custom initial 
condition f (x, y) = x′⋅ y. The initial cosmic ray density 
distribution is a linear function in both the x and y directions. 
The cosmic ray density distribution remains relatively 
stable over time. Minor fluctuations occur, but the overall 
distribution maintains its central concentration. Neumann 
boundary conditions prevent flux through the boundaries, 
allowing the system to preserve the initial distribution.

Conclusions: Neumann boundary conditions preserved 
the central concentration of the cosmic ray density. The 
initial linear distribution remained relatively stable over 
time with minor fluctuations. Where dispersion occurred, 
Neumann conditions prevented flux through the boundaries, 
allowing the system to maintain its central concentration. 
Neumann conditions were effective in preserving the initial 
distribution.
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Here,   represents the rate of change of cosmic ray density with respect to time, and          represent the second 
derivatives of cosmic ray density with respect to the spatial coordinates x, y, and z, respectively.

These equations describe how cosmic ray densities evolve over time due to diffusion processes in one, two, or three-
dimensional space, depending on the dimensionality of the problem you are modelling. The diffusion coefficient D depends 
on the specific properties of the cosmic rays and the medium through which they are propagating.

We'll assume that the cosmic ray density ρ depends on time (t) and three spatial coordinates (x, y, and z) and can be separated 
into four functions:
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system to maintain and propagate these oscillatory patterns. 
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Figure 6: Cosmic Ray Density Evolution: Neumann Boundary Conditions with Custom Initial Condition.

Results and Discussion: We assumed Neumann boundary conditions (insulated ends) and used another custom initial 
condition:        The initial cosmic ray density distribution exhibits an oscillatory pattern in both the x and y 
directions. This oscillatory pattern is maintained and propagates through the system over time. Waves of cosmic ray density 
are observed, with peaks and troughs evolving as time progresses. Neumann boundary conditions allow for the preservation 
of oscillatory behaviour.

Conclusions: Under Neumann boundary conditions, an oscillatory initial condition resulted in the maintenance of oscillatory 
patterns. Waves of cosmic ray density were observed, with peaks and troughs propagating through the system. Neumann 
conditions allowed for the preservation and propagation of oscillations, reflecting the initial oscillatory behaviour. The 
absence of flux through the boundaries enabled the system to maintain and propagate these oscillatory patterns.

Three-Dimensional Heat Equation:
In three dimensions, you can describe the diffusion of cosmic rays in three-dimensional space. Let ρ (x, y, z, t) represent the 
cosmic ray density at position (x, y, z) and time t. The three-dimensional heat equation is [10]
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represent the second derivatives of cosmic ray density with respect to the spatial coordinates x, y, and 
z, respectively. 

These equations describe how cosmic ray densities evolve over time due to diffusion processes in one, 
two, or three-dimensional space, depending on the dimensionality of the problem you are modelling. 
The diffusion coefficient D depends on the specific properties of the cosmic rays and the medium 
through which they are propagating. 

We'll assume that the cosmic ray density ρ depends on time (t) and three spatial coordinates (x, y, and 
z) and can be separated into four functions: 

ρ(x, y, z, t) = T(t).X(x).Y(y).Z(z)     (54) 

Now, let's substitute this separation into the 3D heat equation: 

T′XYZ = D (TX′′YZ+TXY′′Z+TXYZ′′)    (55) 

Dividing both sides by TXYZ gives: 
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Since the left side depends only on time (t), and the right side depends only on spatial coordinates (x, 
y, and z), both sides must be equal to a constant, which we'll call -λ² (a negative constant for 
mathematical convenience): 

�
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𝑇𝑇� = −λ2              (57a) 

�
�
𝑋𝑋��= −λ2             (57b) 

�
� 
𝑌𝑌�� = −λ2            (57c) 

�
�
 Z′′ = −λ2            (57d) 

Now, let's solve each of these ordinary differential equations separately 

3.1. Solving for T(t) 

The equation (57a) is a first-order ordinary differential equation with the solution 

T(t) = A. 𝑒𝑒�����                 �58� 

Here, A is an arbitrary constant. 

3.2. Solving for X(x) 
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Since the left side depends only on time (t), and the right side depends only on spatial coordinates (x, y, and z), both sides 
must be equal to a constant, which we’ll call -λ² (a negative constant for mathematical convenience):

Now, let’s solve each of these ordinary differential equations separately

Solving for T(t)
The equation (57a) is a first-order ordinary differential equation with the solution

Here, A is an arbitrary constant.

Solving for X(x)
The equation (57b) is a second-order ordinary differential equation, and its solution depends on the boundary conditions:

Fixed Ends (Dirichlet Boundary Conditions): In this case, we have boundary conditions, say, X (0) = 0 and X(Lx) = 0, where 
Lx is the length of the system in the x-direction. The solutions are sine functions:      Here, B is an arbitrary 
constant, and n is a positive integer corresponding to the mode of oscillation.

Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary conditions ∂X/∂x = 0 at both ends. The 
solutions are cosine functions:          Again, C is an arbitrary constant, and n is a positive integer corresponding to 
the mode of oscillation.

Solving for Y(y)
The equation (57c) is identical to the equation for X(x), and therefore, the solutions for Y(y) will be the same as for X(x) with 
the same boundary conditions.

Solving for Z(z)
The equation (57d) is identical to the equations for X(x) and Y(y). Therefore, the solutions for Z(z) will also be the same as 
for X(x) and Y(y) with the same boundary conditions.

Now, we can combine the solutions for T(t), X(x), Y(y), and Z(z) to get the general solution for ρ (x, y, z, t):

The equation (57b) is a second-order ordinary differential equation, and its solution depends on the 
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Initial Condition (IC): The initial condition provides the initial distribution of cosmic rays at time t = 0, typically given as ρ 
(x, y, z, 0) = f (x, y, z), where f (x, y, z) is a known function.

Boundary Conditions (BC): The boundary conditions describe how cosmic rays interact with the boundaries of the system. 
The choice of boundary conditions (Dirichlet, Neumann, mixed, etc.) will affect the solutions.
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Let's consider two common sets of boundary conditions:
Case 1: Fixed Ends (Dirichlet Boundary Conditions): In this case, we have boundary conditions, say:
X (0) = 0 and X(Lx) = 0 in the x-direction,
Y (0) = 0 and Y(Ly) = 0 in the y-direction,
Z (0) =0 and Z(Lz) = 0 in the z-direction.

Under these boundary conditions, we use the solutions for X(x), Y(y), and Z(z) as sine functions

Case 2: Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary conditions, say:

Under these boundary conditions, we use the solutions for X(x), Y(y), and Z(z) as cosine functions

Once you have determined the solutions for X(x), Y(y), and Z(z) based on the chosen boundary conditions and initial condition, 
you can construct the full solution for ρ (x, y, z, t) as the values of the constants based on the specific initial condition, 
boundary conditions, and mode numbers (n, m, p).

In Case 1 with Dirichlet boundary conditions, the solutions for X(x),) Y(y), and Z(z) are given by

Now, we’ll substitute these solutions into the separated form of the cosmic ray density 

We’ll also use the initial condition ρ (x, y, z, 0) = f (x, y, z), where f (x, y, z) is a known function representing the initial cosmic 
ray distribution. Now, we’ll apply the initial condition to determine the value of the constant A:

This equation allows us to isolate A
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constant, and n is a positive integer corresponding to the mode of oscillation. 

3.2.b. Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary conditions 
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and constraints. Let's go through the process of determining these values based on different sets of 
boundary conditions. 

3.5. Initial Condition (IC):  
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ρ(x, y, z, 0) = f(x, y, z), where f(x, y, z) is a known function. 

3.6. Boundary Conditions (BC): The boundary conditions describe how cosmic rays interact with the 
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affect the solutions. 
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 x)  
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��

 y) 
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 z)     (60) 

Case 2: Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary 
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��
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 (Lx) = 0 in the x-direction,  

��
��

 (0) = 0 and ��
��

 (Ly) = 0 in the y-direction, 

��
��

 (0) = 0 and ��
��

 (Lz) = 0 in the z-direction. 

Under these boundary conditions, we use the solutions for X(x), Y(y), and Z(z) as cosine functions 

X(x) = B. cos( ��
��

 x)  

Y(y) = B. cos( ��
��

 y) 

Z(z) = B. cos( ��
��

 z)     (61) 

Once you have determined the solutions for X(x), Y(y), and Z(z) based on the chosen boundary 
conditions and initial condition, you can construct the full solution for ρ(x, y, z, t) as the values of the 
constants based on the specific initial condition, boundary conditions, and mode numbers (n, m, p). 

In Case 1 with Dirichlet boundary conditions, the solutions for X(x),)Y(y), and Z(z) are given by 

Xn(x) = Bn.sin( ��
��

 x)  

Ym(y) = Cm.sin( ��
��

 y) 

Zp(z) = Dp.sin( ��
��

 z)     (62) 

Now, we'll substitute these solutions into the separated form of the cosmic ray density  

ρ(x, y, z, t) = T(t).Xn(x).Ym(y).Zp(z)    (63) 

We'll also use the initial condition ρ(x, y, z, 0) = f(x, y, z), where f(x, y, z) is a known function representing 
the initial cosmic ray distribution. 

Now, we'll apply the initial condition to determine the value of the constant A: 

T(0). Xn(x)Ym(y)Zp(z) = f(x, y, z)    (64) 

This equation allows us to isolate A 
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Now, let's consider the time-dependent part in (57a), this is a first-order ordinary differential equation 
for T(t). Solving it gives 

T(t)=T0.𝑒𝑒���
�� 

Here, T0 is an arbitrary constant that can be absorbed into A. 
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Case 2: Insulated Ends (Neumann Boundary Conditions): In this case, we have boundary 
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Once you have determined the solutions for X(x), Y(y), and Z(z) based on the chosen boundary 
conditions and initial condition, you can construct the full solution for ρ(x, y, z, t) as the values of the 
constants based on the specific initial condition, boundary conditions, and mode numbers (n, m, p). 
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Now, we'll substitute these solutions into the separated form of the cosmic ray density  

ρ(x, y, z, t) = T(t).Xn(x).Ym(y).Zp(z)    (63) 

We'll also use the initial condition ρ(x, y, z, 0) = f(x, y, z), where f(x, y, z) is a known function representing 
the initial cosmic ray distribution. 

Now, we'll apply the initial condition to determine the value of the constant A: 

T(0). Xn(x)Ym(y)Zp(z) = f(x, y, z)    (64) 

This equation allows us to isolate A 

A = ���,�,��
��������������� 

    (65) 

Now, let's consider the time-dependent part in (57a), this is a first-order ordinary differential equation 
for T(t). Solving it gives 

T(t)=T0.𝑒𝑒���
�� 

Here, T0 is an arbitrary constant that can be absorbed into A. 
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So, the full solution for ρ (x, y, z, t) in Case 1 with Dirichlet boundary conditions is

Where Xn(x), Ym(y), and Zp(z) are the sine functions based on the chosen mode numbers (n, m, p), A is determined by the 
initial condition and can be absorbed into the constant T0. T(t) is the time-dependent part., λ2 is determined by the eigenvalue 
problem associated with the differential equations for Xn(x), Ym(y), and Zp(z) with the given boundary conditions.

This is the general solution for the cosmic ray density ρ (x, y, z, t) in the three-dimensional system with Dirichlet boundary 
conditions and the specific initial condition f (x, y, z). The values of n, m, p, and λ2 depend on the boundary conditions and the 
geometry of the problem.
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Result and Discussion 

Initial Condition Visualization 

The initial condition represents the distribution of cosmic rays at t = 0. We used a Gaussian-like 
distribution centred at the origin with specified standard deviations in the x, y, and z directions. The 3D 
plot vividly shows the spatial distribution of cosmic rays at the beginning of the simulation. 
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Figure 7: 3D Cosmic Ray Density: Case 1 Initial Condition at t = 0.2.

Result and Discussion
Initial Condition Visualization: The initial condition represents the distribution of cosmic rays at t = 0. We used a Gaussian-
like distribution centred at the origin with specified standard deviations in the x, y, and z directions. The 3D plot vividly 
shows the spatial distribution of cosmic rays at the beginning of the simulation. The chosen Gaussian-like initial condition 
creates a concentrated region of cosmic rays centred at (x0, y0, z0) with a gradual decrease in density as we move away 
from this centre. The standard deviations (sigma_x, sigma_y, and sigma_z) control the width and extent of the distribution 
in each direction. This initial condition represents a scenario where cosmic rays are initially concentrated around a specific 
point in space.

Conclusion: The initial condition visualization in the simulation of cosmic ray diffusion revealed a concentrated region of 
cosmic rays centered at a specific point (x0, y0, z0) within a three-dimensional space. The chosen Gaussian-like distribution, 
characterized by standard deviations (sigma_x, sigma_y, and sigma_z), effectively portrayed the initial cosmic ray density, 
gradually decreasing as we moved away from the center. This representation provides a crucial foundation for further 
numerical simulations and investigations into the dynamic behavior of cosmic ray diffusion over time.
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The chosen Gaussian-like initial condition creates a concentrated region of cosmic rays centred at (x0, 
y0, z0) with a gradual decrease in density as we move away from this centre. The standard deviations 
(sigma_x, sigma_y, and sigma_z) control the width and extent of the distribution in each direction. 
This initial condition represents a scenario where cosmic rays are initially concentrated around a 
specific point in space. 

Conclusion 

The initial condition visualization in the simulation of cosmic ray diffusion revealed a concentrated 
region of cosmic rays centered at a specific point (x0, y0, z0) within a three-dimensional space. The 
chosen Gaussian-like distribution, characterized by standard deviations (sigma_x, sigma_y, and 
sigma_z), effectively portrayed the initial cosmic ray density, gradually decreasing as we moved away 
from the center. This representation provides a crucial foundation for further numerical simulations and 
investigations into the dynamic behavior of cosmic ray diffusion over time. 

 

 

Figure 8: 3D Cosmic Ray Density: Case 2 Initial Condition at t = 0.2 

Results and Discussion 

The code generates a 3D plot representing the cosmic ray density distribution in a rectangular domain 
at t = 0.2. The initial condition is a custom Gaussian-like distribution centered at a specified point within 
the domain. 

The 3D plot visually represents how cosmic rays disperse within the rectangular domain over time. The 
Gaussian-like initial condition creates a concentrated region of cosmic rays centered at a specific point, 
which then diffuses outward due to the diffusion process described by the heat equation. The shape and 
extent of the diffusion are influenced by parameters such as the standard deviations (sigma_x, sigma_y, 
sigma_z) and the center point (x0, y0, z0) of the initial condition. 

Conclusion 

Figure 8: 3D Cosmic Ray Density: Case 2 Initial Condition at t = 0.2.

Results and Discussion: The code generates a 3D plot representing the cosmic ray density distribution in a rectangular 
domain at t = 0.2. The initial condition is a custom Gaussian-like distribution centered at a specified point within the domain. 
The 3D plot visually represents how cosmic rays disperse within the rectangular domain over time. The Gaussian-like initial 
condition creates a concentrated region of cosmic rays centered at a specific point, which then diffuses outward due to the 
diffusion process described by the heat equation. The shape and extent of the diffusion are influenced by parameters such as 
the standard deviations (sigma_x, sigma_y, sigma_z) and the center point (x0, y0, z0) of the initial condition.

Conclusion: In this simulation of cosmic ray diffusion within a two-dimensional rectangular domain, we have explored the 
fundamental principles of diffusion processes. The custom initial condition, characterized by a Gaussian-like distribution 
centred at a specific point, served as a localized source of cosmic rays. As time progressed, we observed how cosmic rays 
naturally dispersed from areas of higher density to regions of lower density, illustrating the inherent diffusion behaviour. 
The simulation underscored the significance of the diffusion coefficient in controlling the rate of cosmic ray dispersion. 
Additionally, we found that the parameters governing the initial condition, such as the standard deviations and centre point, 
profoundly influenced the shape and extent of the cosmic ray distribution. Visualizing the cosmic ray density distribution in 
a three-dimensional plot at a designated time step allowed us to gain valuable insights into the spatial dynamics of cosmic 
rays within the defined domain. This simulation provides a foundational understanding for further exploration of complex 
cosmic ray diffusion scenarios and their implications in scientific and practical applications.

In this simulation of cosmic ray diffusion within a two-dimensional rectangular domain, we have 
explored the fundamental principles of diffusion processes. The custom initial condition, characterized 
by a Gaussian-like distribution centred at a specific point, served as a localized source of cosmic rays. 
As time progressed, we observed how cosmic rays naturally dispersed from areas of higher density to 
regions of lower density, illustrating the inherent diffusion behaviour. The simulation underscored the 
significance of the diffusion coefficient in controlling the rate of cosmic ray dispersion. Additionally, 
we found that the parameters governing the initial condition, such as the standard deviations and centre 
point, profoundly influenced the shape and extent of the cosmic ray distribution. Visualizing the cosmic 
ray density distribution in a three-dimensional plot at a designated time step allowed us to gain valuable 
insights into the spatial dynamics of cosmic rays within the defined domain. This simulation provides 
a foundational understanding for further exploration of complex cosmic ray diffusion scenarios and 
their implications in scientific and practical applications. 

 

Figure 9: 3D Cosmic Ray Density: Case 3 Initial Condition at t = 0.2 

Results and Discussion 

In Case 3, we simulated the diffusion of cosmic rays in a three-dimensional space using the heat 
equation. The simulation was conducted with specific initial and boundary conditions. The 3D plot 
displayed the spatial distribution of cosmic ray density at a particular time step (t = 0.2). The initial 
condition was set as a Gaussian-like distribution centred at the origin with specified standard deviations 
in the x, y, and z directions. 

Figure 9: 3D Cosmic Ray Density: Case 3 Initial Condition at t = 0.2.
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3.Results and Discussion
In Case 3, we simulated the diffusion of cosmic rays in a three-dimensional space using the heat equation. The simulation 
was conducted with specific initial and boundary conditions. The 3D plot displayed the spatial distribution of cosmic ray 
density at a particular time step (t = 0.2). The initial condition was set as a Gaussian-like distribution centred at the origin 
with specified standard deviations in the x, y, and z directions [11-15]. In conclusion, Case 3's simulation demonstrates 
the complex spatial dynamics of cosmic ray diffusion in three dimensions. It serves as a valuable starting point for further 
investigations into cosmic ray behaviour in multidimensional scenarios and its implications in diverse scientific fields.

Overall Conclusion the Study: In this comprehensive study of cosmic ray diffusion, we explored the behaviour of cosmic 
ray density across three distinct cases: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) scenarios. 
Through a series of numerical simulations, we visualized and analysed the diffusion process with various initial conditions and 
boundary constraints. The results revealed intricate patterns of cosmic ray dispersion over time, emphasizing the influence 
of initial conditions, boundary conditions, and spatial dimensions. These findings not only deepen our understanding of 
cosmic ray diffusion phenomena but also underscore the importance of numerical modelling in investigating such complex 
physical processes. The collective insights gained from the nine graphs provide a holistic perspective on cosmic ray behaviour 
across diverse spatial and dimensional contexts, with implications for astrophysics, particle physics, and broader scientific 
inquiries.
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