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Abstract
The many wildfire disasters that have caused tremendous destruction make it necessary to understand how the intensity of the 
fire varies with time and the path taken by the flames as they spread through a region. To gain a scientific understanding of 
these two issues and to be able to control the wildfire spread it is important to develop computational strategies to predict the 
paths taken by the flames and to minimize the damage done. In this paper, bifurcation analysis and multiobjective nonlinear 
model predictive control calculations are conducted on the reaction-diffusion wild spread model. Bifurcation analysis and 
multiobjective nonlinear model predictive control calculations of the reaction-diffusion fire dynamic model was performed. 
Bifurcation analysis was performed using the MATLAB software MATCONT. The multiobjective nonlinear model predictive 
control was performed with the optimization Language PYOMO. The bifurcation analysis reveals the existence of limit points 
and the multiobjective nonlinear model predictive control calculations demonstrate that the rate at which the area is being 
burned could be minimized and the rate at which the fire is being extinguished could be maximized simultaneously.
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1. Introduction
Bush and McLaughlin introduced the subject of fire 
science [1]. Zeldovich et al developed a mathematical 
theory of combustion and explosions [2]. Platt modeled 
fire spread using a time-based probability approach while 
Ramachandran, developed a nondeterministic model of fire 
spread [3,4]. Frieman, looked at various computer Models 
for fire and smoke [5]. Madrzykowski,et al., developed a 
sprinkler fire suppression algorithm for the GSA engineering 
fire assessment system [6]. Takeda et al., developed simplified 
fire growth models for risk-cost assessment In apartment 
buildings Tat and Hasofer, ‘modeled the spread of fire using 
non-stationary stochastic processes [7,8]. 

Honecker, and Peschel, introduced length scales and power 
laws into two dimensional forest-fire models [9]. Medez 
et al., used hyperbolic reaction-diffusion equations for 
forest fire models [10]. Tat developed stochastic models 
and performed optimal Control of Compartment Fires [11]. 
Ashwin,et al., described the existence of traveling fronts for 
the KPP equation( a reaction-diffusion equation used in fire 
modeling) with spatiotemporal delay [12].

Zhong et al., developed a statistical analysis of the current 
status of China forest fire safety Dercole and Maggi discovered 
a border collision bifurcation in a forest fire model. Maggi 
and Rinaldi produced a second-order impact model for 
forest fire regimes [13-15]. Ferragut et al., developed a 

numerical method for solving convection-reaction-diffusion 
multivalued equations in fire spread modeling [16]. Hollis et 
al., tested woody fuel consumption models for application 
in Australian southern eucalypt forest fires [17]. Grishin 
and Filkov, developed a deterministic-probabilistic system 
for predicting forest fire hazards [18]. Min et al., studied 
the dynamic properties of a forest fire model that involved 
reaction-diffusion equations [19]. 

1.1.  Objectives of this Work
Most of the theoretical work about fire models involves 
bifurcation analysis and single-objective optimal control 
tasks performed disjointly. In this work, both bifurcation 
analysis and multiobjective nonlinear model predictive 
control calculations were performed on the reaction-
diffusion dynamic fire model [19]. The bifurcation analysis 
revealed the existence of limit points and the MNLMPC 
calculations resulted in the Utopia solution. This confirms the 
result obtained by Sridhar that when MNLMPC calculations 
were performed on problems that exhibited Limit and 
Branch points the Utopia point was always obtained [20]. 
The paper is organized as follows. First, the reaction-
diffusion fire dynamic model is described. This is followed 
by the numerical procedures for the bifurcation analysis 
and multiobjective nonlinear model predictive control 
(MNLMPC). The results are then described and discussed 
followed by the conclusions. 
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1.2.  Model Description
The reaction-diffusion fire dynamic model that is used 
consists of the equations

In this equation, u is the area of the burned forest 
and v represents the area where the fire has been put 
out. x is the space coordinate and while t is the time.                                                                                                                                            
          represents the rate at which the area is being burned and 
the rate at which the area of the fire is being extinguished.                                                                                                                                    
        are the diffusion terms of u and v in space. d1,d2  
represent the diffusion coefficients and a, b, and c are model 
parameters. The parameter values are a = 0.0588 and c = 4.   
d1,d2 are 0.05 and 3. b is the bifurcation and control variable.

1.3.  Bifurcation Analysis 
Multiple steady states and oscillatory behavior occur in 
various situations. Multiple steady states occur because of 
Branch and Limit bifurcation points cause multiple steady 
states. Hopf bifurcation points produce oscillatory behavior. 
Limit cycles. The MATLAB program MATCONT [21, 22]. 
Is commonly used software to locate limit points, branch 
points, and Hopf bifurcation points? Consider an ODE system 

                   Defining the matrix A as

        Is the bifurcation parameter. The matrix A can be written 
in a compact form as 

	   	                                          (4)

The tangent at any point x; (                                           ) must satisfy 

	   	 Av=0                                (5)

The matrix B must be singular at both limit and branch 
points.. The n+1 th component of the tangent vector Vn+1  = 0 

at a limit point (LP) and for a branch point (BP) the matrix                                                                                                                                           
        must be singular. At a Hopf bifurcation, 

                                                                                                 (6) 

@ indicates the bialternate product while In is the n-square 
identity matrix. Hopf bifurcations cause unwanted oscillatory 
behavior and should be eliminated because oscillations 
make optimization and control tasks very difficult. More 
details can be found in Kuznetsov and Govaerts [23-25].

1.4.  Multi Objective Nonlinear Model Predictive Control 
Algorithm
Flores Tlacuahuaz first proposed the Multiobjective 
nonlinear model predictive control method [26]. that 
does not involve weighting functions, nor does it impose 
additional constraints on the problem unlike the weighted 
function or the epsilon correction method [27]. For a a set 
of ODE 
                                          

                                                                              (7) 

let             (j=12..n); be the variables that need to be 
minimized/maximized simultaneously, tf  being the final time 
value, and n the total number of variables that need to be 
optimized simultaneously. In this MNLMPC method dynamic 
optimization problems that independently minimize/
maximize each variable         are solved individually. The 
minimization/maximization of each         will lead to the 
values      . Then the optimization problem that will be solved 
is 

                                                                                 (8) 

This will provide the control values for various times. The 
first obtained control value is implemented and the rest are 
ignored. The procedure is repeated until the implemented 
and the first obtained control values are the same or if the 
Utopia point (              ; for all j) is achieved. The optimization 
package in Python, where the differential equations are 
automatically converted to algebraic equations will be used. 
The resulting optimization problem was solved using IPOPT 
[28,29]. The obtained solution is confirmed as a global 
solution with BARON [30]. To summarize the steps of the 
algorithm are as follows 
• Minimize/maximize    . This will lead to the value                                                                                                                                            
      at various time intervals ti. The subscript i is the index for 
each time step. 
• Minimize              . This will provide the control values for 
various times.
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• Implement the first obtained control values and discard the 
remaining.
• The steps are repeated until there is an insignificant 
difference between the implemented and the first obtained 
value of the control variables or if the Utopia point is 
achieved. 

2. Results and Discussion 
Bifurcation and Multiobjective nonlinear model predictive 
control calculations were performed on the reaction-
diffusion fire model. 

Bifurcation calculations were performed using the MATLAB 
program MATCONT. Here the second-order derivatives were 
discretized using (N=10) elements. The MATLAB code for 
this would be:

d2u(i)= (u(i-1)-2*u(i)+u(i+1))/ (h*h)
d2v(i) = (v(i-1)-2*v(i)+v(i+1))/ (h*h)

where h is (1/N+1) and i is the number of the element. 
d2u , d2v represent        . This would convert the right-hand 
sides of Eq. 1 into algebraic equations. After discretization, 
the equations would resemble Eq. 2 and MATCONT is used. 
Bifurcation analysis revealed the existence of two limit 
points given by 

  (ui vi b)(for i = 1,2,...10 ) as 

(1.096486 1.187844 1.265469 1.321880 1.351552 1.351552 
1.321880 1.265469 1.187844 1.096486 0.986917 0.976546 
0.968824 0.963702 0.961149 0.961149 0.963702 0.968824 
0.976546 0.986917 0.518885 )
and 
(1.786953 2.523190 3.140729 3.583822 3.814724 
3.814724 3.583822 3.140729 2.523190 1.786953 0.988814 
0.980074 0.973620 0.969360 0.967241 0.967241 0.969360 
0.973620 0.980074 0.988814 0.490588 ). These limit points 
are shown in Figure 1.
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Fig. 1 Limit points when bifurcation analysis was performed on reaction-diffusion fire model
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the rest were discarded. This procedure was repeated until there was no difference between the first and 
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Fig. 2 b vs t for the MNLMPC calculation

Figure 2: b vs t for the MNLMPC Calculation

Figure 3: (u, x, t) Surface for the MNLMPC Calculation

Figure 4: v, x, t Surface for the Mnlmpc Calculation

Fig. 3  (u, x, t)  surface  for the MNLMPC calculation

Fig. 4  v, x, t surface  for the MNLMPC calculation

A recently published article by Sridhar(2024) demonstrated that when MNLMPC calculations were 

performed on problems that exhibited Limit and Branch points the Utopia point was always obtained. 
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A recently published article by Sridhar(2024) demonstrated 
that when MNLMPC calculations were performed on 
problems that exhibited Limit and Branch points the Utopia 
point was always obtained. This was done by incorporating 
the singularity condition (because of the limit and branch 
points) on the co-state equation for the optimal control 
problem. This result confirms the theorem of Sridhar(2024)., 

3. Conclusions
Bifurcation analysis and multiobjective nonlinear model 
predictive control were performed on the reaction. Diffusion 
fire spread model. The bifurcation analysis revealed the 
existence of limit points which imply that the fire spread 
direction could change significantly. The multiobjective 
nonlinear model predictive control resulted in the Utopia 
solution. This demonstrates that the rate at which the area is 
being burned could be minimized and the rate at which the 
fire is being extinguished could be maximized effectively and 
simultaneously.
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