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Abstract 
This article presents a method of sickle cell detection from microscopic images. We extract five attribute values from the connected 
components of an image, and train machine learning classifiers to recognize the sickle cells. Four classifiers were experimented 
with and the vest one was the K-Nearest neighbor classifier with 97.3% accuracy. The other classifiers are the Neutral network, 
Decision tree and Naïve Bayesian classifiers which resulted in accuracy rates of between 89-96.3%. This method is applicable 
for use in low cost computers since it is computationally cheap. The findings of this research can be considered as a screening 
method for diagnosing sickle cell aneamia.
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1. Introduction 
Sickle Cell disease (SCD) is a public health disorder affecting 
millions of people across the globe. It is a genetic condition 
characterized by production of abnormal red blood cells 
which take on the shape of a sickle, as opposed to the normal 
round ones. SCD causes several complications including 
pain, swelling, anaemia, organ damage, blindness, stroke and 
premature death. Current estimates suggest that there are 6 
million Africans living with sickle cell disease and over 50 - 
80% of these patients die before adulthood [1]. The World 
Health Organization asserts that 70% of sickle cell anemia 
deaths in Africa are preventable if some interventions such as 
early screening or identification of sickle cells is carried out 
[2]. Most patients in low resourced countries like in Africa, 
delay to test for SCD because of difficulties in accessing the 
testing services caused by scarcity of medical personnel, 
expensive costs, long distance travel to access the services 
or delays of as long as days/weeks to receive feedback. All 
this makes routine screening for SCD largely impractical and 
thereby delay timely intervention. 

2. Literature Review
In ImPatho is introduced to the world [3]. It is a tool that 
detects sickle cells using only one attribute – eccentricity. 
Unfortunately, the paper does not discuss the accuracy 
rates of the detection algorithm. In the roundness of a 

component is used as the distinguishing feature. However, 
only 4 images were used in the study, which is a very tiny 
and insignificant dataset to make conclusions from [4]. In 
carried out a comprehensive review on automated methods 
to detect sickle cells [5].  The findings revealed that detection 
accuracy ranged from 80.6%, 88%, 91% to 95% [6-9]. These 
accuracy rates can still be improved upon.

3. Methodology 
This work proposes an image-based Sickle cell detection 
method that has been implemented in MATLAB [10]. 

3.1. It Consists of Four Steps that are Highlighted Below
3.1.1 Image Acquisition
A 560-image dataset that is publicly available on Kaggle 
was used in this study. We used an image dataset that we 
developed and published in [11]. Each image consists of 
red blood cells which are wither all normal (negative) or 
containing atleast one sickle cell (positive). The images 
were captured from blood samples collected from Eastern 
Uganda where sickle cells disease is prevalent [12]. The 
same researchers of this work collected and processed the 
blood samples in [12]. The dataset has already labelled 
images with the sickle cells surrounded by a bounding box 
around them for identification [11]. The dataset contains 
four hundred and twenty-two (422) positive images, with 
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43% (180) of them having been captured with field stains 
and 57% (242) with Leishman’s stains. The dataset contains 
one hundred forty-seven (147) negative images/slides with 
62% (91) having been captured by field stains and 38% (56) 
by Leishman stains.

3.1.2. Pre-Processing
All images were pre-processed by conversion to binary, in-
version for a black background, extraction of their connected 
components and filtering out of noise. Fig. 1 illustrates how 
image 20 was transformed when the region of interest was 
the sickled cells. 

Figure 1: A Transformed Image

After preprocessing all the 569 images, the total number 
of connected components extracted were 21,645 with the 
sickled cells being only 1,870 in number while the negative 
ones were 19,775. Clearly, we still had a small positive set 
compared to the negative ones but that is the nature of each 
image because the negative cells far exceed the positive ones 
for all the images. 

3.1.3. Feature Extraction
Five features were then extracted from the connected 
components (objects) which are: Major Axis Length, Minor 
Axis Length, Eccentricity, Convex Area and Circularity [10]. 
The Major Axis Length is the length (in pixels) of the major 
axis of the ellipse that has the same normalized second 
central moments as the region. The Minor Axis Length is the 
length (in pixels) of the minor axis of the ellipse that has the 
same normalized second central moments as the region. The 
eccentricity is the ratio of the distance between the foci of 
the ellipse and its major axis length. The Convex Area is the 
number of pixels in convex image.

The Circularity (C), is the roundness of the object and 
computed as in (1)

where p is the perimeter and r the radius defined as

3.1.4. Training
The data was then divided into two parts, with one part 
(80%) as training data, the second one as testing data (20%). 
We applied four machine learning algorithms and trained 
them to recognize the Sickle cells. They are.
• K-Nearest Neighbor (KNN) with K = 2 and the City Block 
distance metric.

• Decision Tree (DT) with a maximum number of splits = 100.
• Naïve Bayesian (NB) using Gaussian model.
• Neural Networks (NN).

4. Result
4.1. Performance of NB
Naïve Bayesian registered an accuracy of 88.7% with a 
prediction speed of 1,200,000 observations per second. The 
classifier correctly categorized 24.0% of positive cases as 
positive (448 of the 1,870 positive samples) and 94.9% of 
the negatives cases as negative (18,758 of 19,775 negative 
samples). 

4.2. Performance of DT
A better performance was registered by the fine Decision 
tree. This was 96.3% accurate and a prediction speed of 
1,700,000 observations per second. The classifier correctly 
categorized 67.7% of positive cases as positive (1,266 of 
1,870 that were positive) and 99.0% of the negatives cases 
as negative (19,576 of 19,775 negatives).

4.3. Performance of NN
The second-best performance was by a Neural Network 
which has 96.9% accuracy using a prediction speed of 
1,400,000 observations per second. The classifier correctly 
categorized 74.2% (1,387 out of 1,870) of positive cases as 
positive and 99.0% (19,576 out of 19,775) of the negatives 
cases as negative.

4.4. Performance of KNN 
The best performance was by KNN which registered an 
accuracy of 97.3% and a prediction speed of 470,000 
observations per second. The KNN confusion matrix is 
presented in Fig. 2 where its observed that the classifier 
correctly categorized 76.2% of positive cases as positive 
(1,424 of the 1,870 positive samples) and 99.3% of the 
negatives cases as negative (19,641 of 19,775 negative 
samples). This is an impressive performance especially for 
the negative components.
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comprised only 9% of the training set. The best training 
algorithm recorded a true negative rate of 99.3%. This means 
that 100% of what the classifier categorizes as negative is 
negative indeed. But only 76% of what is said to be positive 
is positive indeed. 

These percentages are indeed in the range of what the other 
detection or screening methods available on the market
produce. A smartphone App for blood pressure measurement 
recorded accuracy rates of only 85% [13]. In [14], eight 
Apps were analysed by seven medical doctors and the top 
three Apps provided accuracy rates between 95.1 – 97.8%. 
With our App registering a rate of 97.3%, this shows that it 
performs within the range of well performing diagnosis 
Apps.

It is very interesting to note that when Makola [15] applied
Convolution neural networks (CNN) on the same dataset, an 
accuracy of 97.7% was obtained. This performance is similar 
to what KNN registered here (97.3%). Therefore it is safe to 
say that there is no significant difference in performance 
between the CNN and KNN classifiers.

Additionally, this work revealed that the fastest classifiers are 
NB and DT but unfortunately, they also provide the lowest 
accuracy rates. The slowest classifier is KNN but registered 
the highest accuracy rate of 97.3%. Therefore, KNN is the 
recommended classifier of this research due to high accuracy 

rates and despite the slower performance. 

Table I: Summary of the 4 classifiers

VI CONCLUSION 
This work presents a method for detecting sickle cells from 
digital images. We present five attributes that can be extracted 
from the image components and performance results of four 
classifiers: Naïve Bayes, Decision Trees, K-Nearest Neighbor 
and Neural networks. Our experiments reveal that KNN is 
superior at recognizing sickle cells than the other three, since 
100% of what it says is negative is negative indeed and 76% 
of what it says is positive is positive indeed. The true positive 
rate can further be improved by collecting more images with 
sickle cells and hence training on a wider set of positive 
images. The performance of this method is already in the 
range of most good detection or screening methods available 
on the market. The methods proposed don’t require use of 
sophiscated processors like GPUs but can comfortably work 
on ordinary CPU Processors. This method is therefore suitable 
for use in even resource constrained countries like in Africa 
and South America. This method can be implemented onto 
smartphones which are common gadget available to health 
workers in Africa, including those in rural settings and 
therefore, using such a readily available item for SCD 
screening, may go a long way in enhancing access to 
screening interventions. 
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screening methods available on the market. The methods 
proposed don’t require use of sophiscated processors like 
GPUs but can comfortably work on ordinary CPU Processors. 
This method is therefore suitable for use in even resource 
constrained countries like in Africa and South America. 
This method can be implemented onto smartphones which 
are common gadget available to health workers in Africa, 
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including those in rural settings and therefore, using such a 
readily available item for SCD screening, may go a long way 
in enhancing access to screening interventions. 
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