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Abstract
The present paper is aimed at newly writing a Markov model for transient states which are also not adjacent, from chains 
with discretised time variable. The fundamental matrix of the Markov chain is spelled out; the choice of the representation 
of the probability matrix is analytically determined. No indicators are needed for the likeli-hood tests.
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1.Introduction
In a Markov model for transition between stages of disease 
with discretized time is looked for, in which transitions 
are described within adjacent states only [1]. In a time-
continuous Markov model is looked for; nevertheless, the 
investigation of is founded on the assumption that the model 
be time-independent [2]. In the Markov state landscape in 
investigated, for models in which short time events are also 
taken into account [3]. In citeref4p, non-Markov processes 
are analysed; more in detail, the ’marginal transition 
intensities’ are used.

In the present paper, the hypothesis are taken (i.e. as from) 
about the composition (of individuals) of the sample that the 
’state occupation processes’ are ’independent and identically 
distributed’ [4]. This hypothesis is not only compliant with 
the aims of, but it also facilitates the comparison of the 
presented model with non-Markov features [1].

In the time evolution of the element of the sample can be 
represented as moving within a succession of states. Within a 
’multivariate survival scheme. The items of bibliography from 
mainly deal with models in which the state k + 1 (death) is at 
least not avoidable [4]. The analysis of is based, nevertheless, 
on non-Markov models endowed with ’estimators’ [4].

In a Homogeneous Markov model of states Si (t), i01, nis 
considered, where the fundamental matrix is chosen as 
representing passages between states adjacent to the 
diagonal only [5]. A probability matrix is chosen; nevertheless, 
its consistency is not tested: differently, a ’logistic model’ is 
used in Eq. (1) ibidem, where ’explanatory variables’ are 
used for the ’misclassification’ of pairs of stages.

1.1 The Paper is Organized as Follows
In Section 2, the model developed in is revised; in particular, 
the aspects are recapitulated, which delineate the model for 
transitions between adjacent states only in a Markov model 
with discretized time [1].

In Section 3, the new Markov model with discretized time is 
presented, in which transitions between non-adjacent states 
are also accounted for; more in detail, the fundamental 
matrix of the chain is newly written. Furthermore, the choice 
of the representation of the probability matrix is newly 
spelled out. No use of estimators is made.

2. Introductory Material
From the description is based on the items of information 
about the disease state at various time, where the disease 
states are numbered. In Table page. 855 ibidem, the ’time to 
death’ is discretised in ’days’ units The aim in is to construct 
a Markov model of transient states between ’adjacent states’ 
only from one disease states to another disease state during 
the discretised time; the aim is less broad that one prepared 
for in Table pag. 855 ibidem [1].

The methods for the ’inference’ of the parameters are there 
developed as follows. The transition are considered, between 
adjacent states only. The transition rate from the state i o the 
state j of the disease are named λij at a given discretised time, 
as i,j = 1,..., k,i 6= j; the entries µ’s are those on the rightmost 
column: the state k + 1 is death. The functions Fi(t;i) are 
named the ’functions for survival times’ and are defined as 
F(t;i) = Pr(T ≤ t | state i at the time t = 0) ,i.e.
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The fundamental matrix of the chain is chosen in [1] as 
from with T the survival time as

The fundamental matrix           is chosen and here spelled out 
as containing states adjacent to the diagonal entries only.

The representation of the probability matrix        is chosen 
as follows. The entries P� ij of the probability matrix        are 
calculated as

The hypothesis (1) pag. 860 of [1]is required as the 
homogeneity of the parameters λ’s and µ’s within a statistical 
sample.

The indicators xi from the vector   from which the new 
parameters λij (    ) and µ(   )are obtained for the sake of likeli-
hood tests.

2.1 The Markov Model of Adjacent States and of Non-
Adjacent States
A Markov model of adjacent states and of non-adjacent 
states is here newly constructed as follows. Generalized 
fundamental matrix 

where the entries λij are now generalised from their role in 
[1] as 

 With the new definition of Qkk as

The choice of the transition probability matrix      is as follows. 
The time variables tj are here newly normalised as

being T the maximum value from Table pag. 855 in [1]. 
The new choice of the normalization is demanded for the 
choice of the representation of the probability matrix to be 
consistent with the Kolmogorov equations.

The representation of the probability matrix     is here chosen 
as follows.

The entries of the transition probability matrix pij are

  As

3. Outlook
The present paper is aimed at writing a new Markov model of 
disease states with discretised time, in which transitions within 
non-adjacent states are also newly taken into account.

The hypothesis that ’state occupation processes’ be 
’independent and identically distributed’. The fundamental 
matrix of the chain is newly written. The representation of the 
probability matrix is newly chosen and spelled out. The mean 
sojourn times and the means passage time can be calculated 
accordingly.

The calculation of the time evolution of the eigenvalues allows 
one to define the errors. According to the variances, hidden 
Markov states models can be constructed (where some of the 
propositions of can be generalized) [5].
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855 ibidem, the ’time to death’ is discretised in ’days’ units.
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discretised time; the aim is less broad that one prepared for in Table pag. 855
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The methods for the ’inference’ of the parameters are there developped as fol-
lows.
The transition are considered, between adjacent states only.
The transition rate from the state i o the state j of the disease are named λij

at a given discretised time, as i, j = 1, ..., k, i �= j; the entries µ’s are those on
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The functions Fi(t; i) are named the ’functions for survival times’ and are de-
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The representation of the probability matrix P̂K is chosen as follows.
The entries pK ij of the probability matrix P̂K are calculated as
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P̂K(t) = P̂K(t)Q̂K . (3)

The hypothesis (1) pag. 860 of [1]is required as the homogeneity of the param-
eters λ’s and µ’s within a statistical sample.
The indicators xi from the vector �x from which the new parameters λij(�x) and
µ(�x)are obtained for the sake of likeli-hood tests.
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with the new definition of Qkk as

−Qkk ≡





�

1�=k

λik



+ λk,k+1 (6)

The choice of the transition probability matrix P̂ is as follows.
The time variables tj are here newly normalised as

tj ≡
Tj

T
, (7)

being T the maximum value from Table pag. 855 in [1]. The new choice of the
normalisation is demanded for the choice of the representation of the probability
matrix to be consistent with the Kolmogorov equations.
The representation of the probability matrix P̂ is here chosen as follows.
The entries of the transition probability matrix pij are

pjj ≡ 1− qjjtj , (8a)

pij ≡ o(λij), i �= j, i = 1, ..., k + 1. (8b)

as
P̂ = (9)













p11 o(λ12) o(λ13) o(λ14) ... o(λ1,k+1)
o(λ21) p22 o(λ23) o(λ24) ... o(λ2,k+1)
o(λ31 o(λ32) p33 o(λ34) ... o(λ3,k+1)
... ... ... ... ... ...

0(λk+1,1) o(λk+1,2) o(λk+1,3) o(λk+1,4) ... pk+1,k+1













4 Outlook

The present paper is aimed at writing a new Markov model of disease states
with discretised time, in which transitions within non-adjacent states are also
newly taken into account.
The hypothesis that ’state occupation processes’ be ’independent and identi-
cally distributed’. The fundamental matrix of the chain is newly written. The
representation of the probability matrix is newly chosen and spelled out.
The mean sojourn times and the means passage time can be calculated accord-
ingly.
The calculation of the time evolution of the eigenvalues allows one to define the
errors.
According to the variances, hidden Markov states models can be constructed
(where some of the propositions of [5] can be generalised).
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