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Abstract
Mitral regurgitation (MR) is a serious heart valve disease that can have devastating consequences if left untreated. Timely 
diagnosis and treatment are crucial to prevent further complications, but traditional diagnostic methods pose significant 
challenges. These methods are not only expensive but also labor-intensive, requiring specialized clinical expertise, which 
creates barriers to effective MR screening. To address these challenges, we propose a novel semi supervised model for 
MR classification called CUSSP. CUSSP is designed to process cardiac imaging slices from the 4- chamber view of the 
heart, utilizing standard computer vision techniques and contrastive models to learn from large amounts of unlabeled 
data. This approach enables the model to leverage the vast amounts of available imaging data, even when labeled data is 
scarce. By employing specialized classifiers, CUSSP creates the first automated MR classification system, revolutionizing 
the diagnosis and treatment of this critical heart condition. The significance of CUSSP lies in its ability to overcome the 
limitations of traditional diagnostic methods. Cardiac imaging is a complex and time-consuming process, requiring 
specialized expertise to interpret and diagnose MR. CUSSP automates this process, enabling healthcare professionals 
to focus on high- value tasks while ensuring accurate and timely diagnoses. The performance of CUSSP is impressive, 
achieving an F1 score of 0.69 and a ROC-AUC score of 0.88 on a test set of 179 labeled sequences, comprising 154 non-MR 
and 25 MR cases. These results establish the initial benchmark for this new task, demonstrating the potential of CUSSP 
to transform MR diagnosis. The CUSSP model is trained using a semi supervised approach, combining the strengths of 
both supervised and unsupervised learning. This approach enables the model to learn from large amounts of unlabeled 
data, leveraging the inherent patterns and relationships within the imaging data. By incorporating specialized classifiers, 
CUSSP achieves high accuracy and robustness, even in the presence of limited labeled data. The use of contrastive models 
in CUSSP is a key innovation, enabling the model to learn from unlabeled data and adapt to new patterns and variations. 
This approach allows CUSSP to generalize well to unseen data, ensuring accurate diagnoses even in cases with complex 
or rare presentations. The implications of CUSSP are far-reaching, with the potential to improve patient outcomes, reduce 
healthcare costs, and enhance the efficiency of cardiac care. By automating MR diagnosis, CUSSP can help address the 
growing demand for cardiac imaging services, enabling healthcare providers to focus on high-value tasks and improving 
patient care. CUSSP represents a significant breakthrough in MR diagnosis, offering a novel semisupervised approach 
to automated classification. By leveraging computer vision techniques, contrastive models, and specialized classifiers, 
CUSSP achieves high accuracy and robustness, establishing a new benchmark for MR diagnosis. With its potential to 
transform cardiac care, CUSSP is poised to make a meaningful impact on patient outcomes and healthcare efficiency.
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1. Introduction
1.1 Mitral Regurgitation
Mitral regurgitation (MR) is a valvular heart disease 
characterized by the incomplete closure of the mitral valve 
during systole, the phase when the left ventricle contracts, 
resulting in the backflow of blood from the left ventricle 

(LV) into the left atrium (LA) – as illustrated in Figure 1. 
MR can arise from organic or functional causes [1-6]. With 
organic MR leading to the enlargement of the atrium and 
annulus, and functional MR increasing atrial pressure [7]. 
As MR progresses, it can lead to arrhythmia, shortness of 
breath, heart palpitations, and pulmonary hypertension 
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[8-14]. If left undiagnosed and untreated, MR can cause 
significant hemodynamic instability and congestive heart 
failure, potentially leading to death [15-17]. Acute MR 
typically requires immediate medical intervention [18-
22]. Therefore, early detection and assessment are crucial 
for optimal treatment outcomes. The best short-term and 
long-term results are achieved in asymptomatic patients 
who undergo surgery in advanced repair centers with low 
operative mortality (<1%) and high repair rates (≥80−90%) 
[7].

1.2 MR Diagnosis
MR is often detected only after symptoms appear. For 
asymptomatic patients, the quantitative grading of MR is a 
strong indicator for clinical treatment, such as immediate 
cardiac surgery [8]. Clinically, MR is typically diagnosed 

using Doppler echocardiography, followed by cardiovascular 
magnetic resonance (CMR) to assess MR severity and 
accurately quantify the regurgitant volume, a key severity 
indicator [20]. Studies evaluating CMR for MR assessment 
often use the difference between left ventricular stroke 
volume (LVSV) and forward stroke volume (FSV), with 
LVSV typically estimated from short-axis (SA) view CMR – a 
4-D tensor – and FSV determined by aortic phase-contrast 
velocity- encoding images [20]. This diagnostic process 
requires continuous involvement from expert clinicians 
and specific processing of phase-contrast images of the 
proximal aorta or main pulmonary artery during CMR data 
acquisition. The expense associated with this standard 
diagnostic procedure presents a barrier to large-scale MR 
screening in the general population.

Figure 1: Three Cardiovascular Magnetic Resonance (CMR) Images Showing the Long-axis Four-chamber View of the 
heart. 

Left: A Heart with Normal Mitral Valve. Middle: A Heart with 
Normal Mitral Valve When the Valve Leaflets are Open. Right: 
A Heart With Mitral Regurgitation. The Red Dotted Line 
Denotes the Mitral Valve. 

diagnose MR, enabling wide-scale screening. We use long-
axis 4CH CMR imaging data from the UK Biobank, including 
data from over 30,000 subjects, of which 704 were labeled 
by an expert cardiologist [1]. While the 4CH view can 
identify MR when the regurgitant jet is visible, the imaging 
lacks comprehensive annotations or diagnoses for individual 
patients. To address this challenge, we rely on weakly 
supervised and unsupervised methods. Weakly supervised 
deep learning has proven successful in detecting other 
heart pathologies. For instance, Fries et al used a weakly 
supervised deep learning method (CNN- LSTM) to classify 
aortic valve malformations from aortic valve cross-section 
CMR data in the UK Biobank, successfully extracting critical 
features of the aortic valve opening shape [9]. Similarly, 
Vimalesvaran et al. developed a deep learning- based 
pipeline to detect aortic valve pathology using 3CH CMR 
imaging from three hospitals, with fully annotated data sets 
including landmarks, stenotic jets, and regurgitant jets [21]. 
Unlike these studies, we faced the challenge of extracting 
complex mitral valve regurgitant features from 4CH CMR 
images with no annotations for landmarks, regurgitant jets, 
or easily extractable features, and only a small amount of 
binary MR labels. To our knowledge, this is the first study to 
identify MR using 4CH CMR imaging data in an automated 
pipeline.

1.3 Noval Approach
We propose an automated five-stage pipeline called 
Cardiovascular Magnetic Resonance U-Net Localized Self-
Supervised Predictor (CUSSP). This approach integrates 
several existing neural network architectures to address the 
challenges of MR classification. Specifically, we use a U-Net 
for segmenting heart chambers, which helps localize the area 
around the mitral valve [18]. We enhance the appearance of 
the valve using histogram equalization, then use a Barlow 
Twins network to learn unsupervised representations of 
blood flow around the valve. A Siamese network is employed 
to learn differences between MR and non- MR instances. 
During training, CUSSP leverages a large amount of unlabeled 
CMR images with minimal supervision from a small set of 
MR labels annotated by a cardiologist. However, at test time, 
CUSSP operates fully automatically [23, 26].

2. Methodology
2.1 Segmentation of the Cardiac Magnetic Resonance 
Images
The CMR imaging data from the UK Biobank relevant to 
MR detection includes long-axis 2- chamber (2CH) and 
long-axis 4-chamber (4CH) views, as illustrated in Figure 
2. Additionally, the short-axis view CMR offers precise 
descriptions of the left ventricle. Both long-axis and short-
axis views are utilized to estimate heart measurements 
pertinent to MR detection, although only the long-axis 4CH 
view is employed for the deep learning models.
 
As part of the preprocessing steps, we performed semantic 
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segmentation on the CMR imaging data, using masks (Figure 
2) generated by a U-Net segmentation model to emphasize 
regions of interest for MR classification. U-Net is currently 
the leading architecture for medical imaging segmentation, 
with various U-Net variants developed for specific 
applications [18]. Ternaus Net, a U-Net variant, reshapes the 
U-Net encoder to match the VGG11 architecture, allowing 
it to leverage pre-trained VGG11 model weights for faster 
convergence and improved segmentation outcomes [12, 
19]. While most medical imaging segmentation models 
are trained using supervised learning, weakly supervised 
segmentation methods such as Voxel Morph augmented 
segmentation, ACNN, CCNN, graph-based unsupervised 
segmentation, and GAN-based unsupervised segmentation 
also achieve comparable results. For the segmentation of the 
4CH, 2CH, SA, and aorta view CMR imaging dataset from the 
UK Biobank, Bai et al. provide a supervised segmentation 

model [2, 13, 15, 16, 23, 24, 27]. In Figure 2, we present 
examples of the segmentation outputs for the long- axis 4CH 
(left), 2CH (middle), and short-axis (right) CMR imaging 
data. We manually labeled 100 CMR images for each view 
and trained a supervised segmentation model using the 
Ternaus Net architecture [2]. The segmentation outputs, 
shown in Figure 2, are used to calculate measurements 
of cardiac structure and function for the four heart 
chambers, summarized in Table 1. The short-axis view CMR 
segmentation output is used to estimate measurements for 
the left and right ventricles, while the long-axis 4CH and 
2CH views are used to estimate measurements for the left 
and right atria. Specifically, the left atrial volume is estimated 
using the biplane method with segmentation of both the 2CH 
and 4CH views, while the right atrial volume is estimated 
using the single plane method with segmentation of the 4CH 
view.

Figure 2: Example of the Segmentation Outputs of the Long Axis 4ch (left), 2ch (Middle) CMR View Imaging Data and 
the Short Axis (Right) CMR Imaging Data.

2.2 Three MR Classification Models
We consider two baseline models, random forests (Section 
2.2.1) and a CNNLSTM (Section 2.2.2). We then present our 
CUSSP model in section 2.2.3.

2.3 Random Forest
baseline We first considered a random forest (RF) 
classifier trained for MR classification on the tabular heart 
measurements derived from the semantic segmentation 
masks, as described in Section 2.1. We divided the 18 features 
by body surface area (BSA) prior to training the RF [3].

Left
Atrium

Right
Atrium

Left
Ventricle

Right
Ventricle

Vol Max (mL) Vol Max (mL) End-Systolic Vol (mL) End- Systolic Vol (mL)

Volume  Min (mL) Vol Mi (mL) End- Diastolic Vol (mL) End- Diastolic Vol (mL) 

Stroke Vol (mL)  Stroke Vol (mL) Stroke Vol (mL) Stroke Vol (mL) 

Ejection Fraction 
(%) 

Ejection Fraction (%) Ejection Fraction (%) Cardiac  
Output (L/min) Mass (g) 

Ejection Fraction (%)   

Table 1: Cardiac measurements derived from the semantic segmentation of the CMR.

2.4 Weakly Supervised CNN-LSTM Baseline
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2.5 The CUSSP Framework
encoder is fine-tuned in the Siamese network, it is combined 
with a 3-layer multi-layer perceptron (MLP) network to form 
a classifier, which is trained on the same labeled dataset. To 
enhance computation efficiency and training accuracy, we 
also tested the framework using a smaller window of 25 
frames, since MR occurs between diastole and systole.

2.6 Conceptualization
To enhance the encoding of blood flow information pertinent 
to MR classification from the 4CH CMR view, we explored 
self-supervised representation learning methods that can 
harness all the unlabeled CMR sequences available in the UK 
Biobank. Typically, self-supervised representation learning 
for visual data involves maximizing the similarity between 
representations of diverse distorted versions of a sample. 
Among various self- supervised architectures, including 
Sim CLR , SWAV , and BYOL , we opted for Barlow Twins due 
to its batch-size independence [4, 5, 10, 26]. With labeled 
data, our siamese network compares the representation 
differences between classes by sampling two inputs from 
different classes, as demonstrated in [25]. Thus, our CUSSP 
MR classification pipeline leverages both self-supervised 
and supervised representation learning.

2.7 Test-time Pipeline
Our CUSSP method consists of five main steps, depicted 
in Figure 4, with the first two steps representing data 
preprocessing and the latter three steps utilizing network 
components trained for MR classification, as described in 
the next section. The preprocessing of the CMR imaging 

sequence is detailed in Figure 8 in the Appendix. We 
employed the segmentation model in 2.1 to identify the 
mitral valve and the orientation of the left ventricle. We 
then extracted a square patch with the mitral valve at its 
center, positioned horizontally. After cropping, we applied 
histogram equalization to the patch with the pixel intensity 
range of the left atrium. The resulting patches are utilized by 
the downstream networks.

2.8 Training Process
The first step involves training a representation encoder 
in a Barlow Twins network using over 30,000 unlabeled 
preprocessed sequences. We utilized ResNet-18 with 
an output dimension of 512 as the encoder, with hidden 
dimension and projector output dimensions of 2048. After 
training the encoder with the unlabeled dataset, it is fine-
tuned in a siamese network using a relatively smaller labeled 
set, as described in 3.1. During training, two sequences are 
sampled from the labeled dataset, with the first being non-
MR and the second being either MR or non-MR. The two 
sequences are passed through the representation encoder 
to obtain embeddings, which are then used to calculate the 
contrastive loss. The model is trained to maximize contrastive 
loss when the two samples are non-MR and MR and to 
minimize it when both are non-MR. Once the representation 
encoder is fine-tuned in the siamese network, it is combined 
with a 3-layer multi-layer perceptron (MLP) network to form 
a classifier, which is trained on the same labeled dataset. To 
enhance computation efficiency and training accuracy, we 
also tested the framework using a smaller window of 25 
frames, since MR occurs between diastole and systole.

 
short-axis view CMR offers precise descriptions of the 
left ventricle. Both long-axis and short-axis views are 
utilized to estimate heart measurements pertinent to 
MR detection, although only the long-axis 4CH view 
is employed for the deep learning models. 

As part of the preprocessing steps, we 
performed semantic segmentation on the CMR 
imaging data, using masks (Figure 2) generated by a 
U-Net [18] segmentation model to emphasize regions 
of interest for MR classification. U-Net is currently 
the leading architecture for medical imaging 
segmentation, with various U-Net variants 
developed for specific applications. TernausNet [12], 
a U-Net variant, reshapes the U-Net encoder to 
match the VGG11 architecture, allowing it to 
leverage pre-trained VGG11 [19] model weights for 
faster convergence and improved segmentation 
outcomes. While most medical imaging segmentation 
models are trained using supervised learning, weakly 
supervised segmentation methods such as 
VoxelMorph augmented segmentation [27], ACNN 
[16], CCNN [13], graph-based unsupervised 
segmentation [15], and GAN-based unsupervised 
segmentation [23,24] also achieve comparable 
results. For the segmentation of the 4CH, 2CH, SA, 
and aorta view CMR imaging dataset from the UK 
Biobank, Bai et al. [2] provide a supervised 
segmentation model. In Figure 2, we present 
examples of the segmentation outputs for the long-
axis 4CH (left), 2CH (middle), and short-axis (right) 
CMR imaging data. We manually labeled 100 CMR 
images for each view and trained a supervised 
segmentation model using the TernausNet [12] 
architecture. The segmentation outputs, shown in 
Figure 2, are used to calculate measurements of 
cardiac structure and function for the four heart 
chambers, summarized in Table 1. The short-axis 
view CMR segmentation output is used to estimate 
measurements for the left and right ventricles, while 
the long-axis 4CH and 2CH views are used to 
estimate measurements for the left and right atria. 
Specifically, the left atrial volume is estimated using 
the biplane method with segmentation of both the 
2CH and 4CH views, while the right atrial volume is 
estimated using the single plane method with 
segmentation of the 4CH view. 

 

Fig.2. Example of the segmentation outputs of the long axis 
4CH (left), 2CH (middle) CMR view imaging data and the 
short axis (right) CMR imaging data. 

2.2 Three MR classification models 

We consider two baseline models, random 
forests (Section 2.2.1) and a CNNLSTM (Section 
2.2.2). We then present our CUSSP model in Section 
2.2.3. 

2.2.1 Random forest  
baseline We first considered a random forest (RF) 
classifier [3] trained for MR classification on the 
tabular heart measurements derived from the 
semantic segmentation masks, as described in 
Section 2.1. We divided the 18 features by body 
surface area (BSA) prior to training the RF. 
 
Table 1. Cardiac measurements derived from the semantic 
segmentation of the CMR. 
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Atrium 

Right 
Atrium 
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Right 
Ventricle 
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2.2.2 Weakly supervised CNN-LSTM baseline 

 

Fig.3. Overview of the CNN-LSTM method pipeline for MR 
classification 

 
2.2.3 The CUSSP framework 

Center Crop 

Probabilistic  
labels 

4 CH Images Masking Segmentation 

Figure 3: Overview of the CNN-LSTM Method Pipeline for MR Classification.

Figure 4: Overview of the CUSSP Pipeline for MR Classification, With its 5 Steps: (1) Segmentation, (2) Localization, 
(3) Cropping, (4) Equalization, and (5) Prediction.

 
2.2.3.1 Conceptualization 

        To enhance the encoding of blood flow 
information pertinent to MR classification from the 
4CH CMR view, we explored self-supervised 
representation learning methods that can harness all 
the unlabeled CMR sequences available in the UK 
Biobank. Typically, self-supervised representation 
learning for visual data involves maximizing the 
similarity between representations of diverse 
distorted versions of a sample. Among various self-
supervised architectures, including SimCLR [5], 
SwAV [4], and BYOL [10], we opted for Barlow Twins 
[26] due to its batch-size independence. With labeled 
data, our siamese network compares the 
representation differences between classes by 
sampling two inputs from different classes, as 
demonstrated in [25]. Thus, our CUSSP MR 
classification pipeline leverages both self-supervised 
and supervised representation learning. 

2.2.3.2. Test-time pipeline 

       Our CUSSP method consists of five main steps, 
depicted in Figure 4, with the first two steps 
representing data preprocessing and the latter three 
steps utilizing network components trained for MR 
classification, as described in the next section. The 
preprocessing of the CMR imaging sequence is 
detailed in Figure 8 in the Appendix. We employed 
the segmentation model in 2.1 to identify the mitral 
valve and the orientation of the left ventricle. We 
then extracted a square patch with the mitral valve 
at its center, positioned horizontally. After cropping, 
we applied histogram equalization to the patch with 
the pixel intensity range of the left atrium. The 
resulting patches are utilized by the downstream 
networks. 

2.2.3.3. Training process 

       The first step involves training a representation 
encoder in a Barlow Twins network using over 30,000 
unlabeled preprocessed sequences. We utilized 
ResNet-18 with an output dimension of 512 as the 
encoder, with hidden dimension and projector output 
dimensions of 2048. After training the encoder with 
the unlabeled dataset, it is fine-tuned in a siamese 
network using a relatively smaller labeled set, as 
described in 3.1. During training, two sequences are 
sampled from the labeled dataset, with the first being 
non-MR and the second being either MR or non-MR. 
The two sequences are passed through the 
representation encoder to obtain embeddings, which 
are then used to calculate the contrastive loss. The 
model is trained to maximize contrastive loss when 
the two samples are non-MR and MR and to minimize 
it when both are non-MR. Once the representation 

encoder is fine-tuned in the siamese network, it is 
combined with a 3-layer multi-layer perceptron 
(MLP) network to form a classifier, which is trained 
on the same labeled dataset. To enhance computation 
efficiency and training accuracy, we also tested the 
framework using a smaller window of 25 frames, 
since MR occurs between diastole and systole. 

 

Fig.4. Overview of the CUSSP pipeline for MR 
classification, with its 5 steps: (1) segmentation, (2) 
localization, (3) cropping, (4) equalization, and (5) 
prediction. 

3. EXPERIMENTS 

3.1 Experimental setup 

We used 4CH CMR images to conduct 
experiments with both the CNN-LSTM and CUSSP 
methods. Our dataset comprised 704 labeled 
sequences, divided into a training set and a test set. 
For the training set, we selected 525 sequences, of 
which 452 were labeled as non-MR and 73 as MR. The 
remaining 179 sequences were reserved for testing, 
with 154 labeled as non-MR and 25 as MR. 
Given the significant class imbalance, we chose the 
F1 score as our primary evaluation metric to balance 
precision and recall. Additionally, we reported 
precision and recall to provide a comprehensive 
evaluation of the model performance 
 
3.2 Random Forest Classification Results 

The random forest model is trained with 10-
fold cross validation, with a random search over a 
parameter grid of n_estimators(10−100), 
max_depth(2− 16), max_features(sqrt,log2), 
min_samples_leaf(2−8). The optimal hyperparameter 
setting found is: n_estimators = 20, max_features = 
log2, max_depth = 8, min_samples_leaf = 2. The best 
results obtained are presented in Table 2. 
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3. Experiments
3.1 Experimental Setup
We used 4CH CMR images to conduct experiments with both 
the CNN-LSTM and CUSSP methods. Our dataset comprised 
704 labeled sequences, divided into a training set and a test 
set. For the training set, we selected 525 sequences, of which 
452 were labeled as non-MR and 73 as MR. The remaining 
179 sequences were reserved for testing, with 154 labeled as 
non-MR and 25 as MR. Given the significant class imbalance, 
we chose the F1 score as our primary evaluation metric 
to balance precision and recall. Additionally, we reported 

precision and recall to provide a comprehensive evaluation 
of the model performance.

3.2 Random Forest Classification Results
The random forest model is trained with 10- fold cross 
validation, with a random search over a parameter grid of 
n_estimators (10−100), max_depth (2−	 16),	 m a x _
features (sqrt,log2), min_samples_leaf (2−8). The optimal 
hyperparameter setting found is: n_estimators = 20, max_
features = log2, max_depth = 8, min_samples_leaf = 2. The 
best results obtained are presented in Table 2.

Model Pos. Acc Neg. Acc Precision Recall F1 AUC
RF 0.09 0.99 0.43 0.09 0.14 0.58
CNN-LSTM 0.53 0.86 0.45 0.53 0.44 0.72
CUSSP-1 0.38 0.87 0.29 0.38 0.32 0.65
CUSSP-2 0.29 0.87 0.25 0.29 0.27 0.63
CUSSP-3 0.38 0.90 0.35 0.38 0.36 0.66
CUSSP-SIAM 0.55 0.96 0.66 0.55 0.60 0.80
CUSSP-SIAM-25 0.62 0.96 0.8 0.62 0.69 0.88

Table 2: Experimental results show that CUSSP-1, 2, 3, and 25 are trained using the Barlow Twins-MLP model without 
fine-tuning with the Siamese network, while USSP-SIAM and CUSSPSIAM-25 are trained using the same model.

Figure 5: Detailed Overview of the CNN-LSTM Method Pipeline for MR Classification

3.3 CNN-LSTM Classification Results
We conducted experiments on the Dense Net-LSTM 
classification model using various input image sizes, 

attention layer configurations, and masks. The best CNN-
LSTM model attains a F1-score of 0.44, shown in Table 2.
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We conducted experiments on the DenseNet-LSTM 
classification model using various input image sizes, 
attention layer configurations, and masks. The best 
CNN-LSTM model attains a F1-score of 0.44, shown 
in Table 2. 

 

Fig. 5. Detailed overview of the CNN-LSTM method 
pipeline for MR classification. 

3.4 CUSSP Classification Results 

We evaluated various configurations of the 
CUSSP model to determine the relative benefits of 
different components. In the first configuration, we 
combined the ResNet18 model with a 3-layer MLP to 
train a classifier using the labeled training set after 
pre-training it in the Barlow Twins network with the 
unlabeled dataset. During classifier training, we 
weighted the cross-correlation loss from the Barlow 
Twins network and the cross-entropy loss from the 

binary classification using three different 
configurations. For CUSSP-1, the cross-correlation 
loss had a weight of 0.9, while the cross-entropy loss 
had a weight of 0.1. For CUSSP-2, both losses were 
weighted equally at 0.5. For CUSSP-3, the weights 
were reversed to 0.1 for the cross-correlation loss and 
0.9 for the cross-entropy loss. Both CUSSP-1 and 
CUSSP-3 outperformed CUSSP-2, although their 
performance remained low, highlighting the 
necessity for fine-tuning, which we discuss below. 
 
In the second scenario, we fine-tuned the encoder 
with a Siamese network to enhance the quality of the 
encoded representations post-training in the Barlow 
Twins network. To prevent overfitting and limit the 
model's capacity, we froze the parameters of all 
layers except the last block of the ResNet18 encoder 
during the training of the Siamese network and the 
classifier. This fine-tuned model, named CUSSP-
SIAM, exhibited significant performance 
improvement. 
 
In the final configuration, CUSSP-SIAM-25, we 
truncated the number of frames in the training 
sequences from 50 to 25 frames, focusing on the 
interval during which mitral regurgitation occurs. 
This approach further refined the model’s 
performance. The results are summarized in Table 2, 
and the ROC-AUC curve for CUSSP-SIAM-25 is 
shown in Figure 5. 

3.4 CUSSP Classification Results
We evaluated various configurations of the CUSSP model to 
determine the relative benefits of different components. In 
the first configuration, we combined the ResNet18 model 
with a 3-layer MLP to train a classifier using the labeled 
training set after pre-training it in the Barlow Twins 
network with the unlabeled dataset. During classifier 
training, we weighted the cross-correlation loss from the 
Barlow Twins network and the cross-entropy loss from the 
binary classification using three different configurations. For 
CUSSP-1, the cross-correlation loss had a weight of 0.9, while 
the cross-entropy loss had a weight of 0.1. For CUSSP-2, 
both losses were weighted equally at 0.5. For CUSSP-3, 
the weights were reversed to 0.1 for the cross-correlation 

loss and 0.9 for the cross-entropy loss. Both CUSSP-1 and 
CUSSP-3 outperformed CUSSP-2, although their performance 
remained low, highlighting the necessity for fine-tuning, 
which we discuss below.

In the second scenario, we fine-tuned the encoder with a 
Siamese network to enhance the quality of the encoded 
representations post-training in the Barlow Twins network. 
To prevent overfitting and limit the model's capacity, 
we froze the parameters of all layers except the last 
block of the ResNet18 encoder during the training of the 
Siamese network and the classifier. This fine-tuned model, 
named CUSSP- SIAM, exhibited significant performance 
improvement. In the final configuration, CUSSP-SIAM-25, we 
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truncated the number of frames in the training sequences 
from 50 to 25 frames, focusing on the interval during which 
mitral regurgitation occurs. This approach further refined 

the model’s performance. The results are summarized in 
Table 2, and the ROC-AUC curve for CUSSP-SIAM-25 is shown 
in Figure 5.

Figure 6: The ROC AUC Curve and the Precision-recall Curve of CUSSP. The Annotated Coordinates on the Precision-
recall Curve Plot are (Recall, Precision, f1-score, Threshold).
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Fig.6. Overview of the dataset. Top: Example of the long axis 4CH (left), 2CH (middle) CMR view imaging data and the short 
axis (right) CMR imaging data. Bottom: Example of the segmentation outputs of the long axis 4CH (left), 2CH (middle) CMR 
view imaging data and the short axis (right) CMR imaging data. 

 

Fig.7. Detailed overview of the CNN-LSTM method pipeline for MR classification. 

 

Fig.8. Detailed overview of the pre-processing steps for CUSSP. Top: Example of the 4CH CMR images in the original contrast (left), the left 
atrium histogram equalized contrast (middle), and the cropped patch histogram equalized contrast (right), with blue contours outline the left 
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Figure 7: Overview of the dataset. Top: Example of the long axis 4CH (left), 2CH (middle) CMR view imaging data and 
the short axis (right) CMR imaging data. Bottom: Example of the segmentation outputs of the long axis 4CH (left), 
2CH (middle) CMR view imaging data and the short axis (right) CMR imaging data.
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Figure 8: Detailed overview of the CNN-LSTM method pipeline for MR classification.
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Figure 9: Detailed overview of the pre-processing steps for CUSSP. Top: Example of the 4CH CMR images in the 
original contrast (left), the left atrium histogram equalized contrast (middle), and the cropped patch histogram 
equalized contrast (right), with blue contours outline the left atrium, and the red square boxes outline the patch to 
crop. Bottom: Example of the cropped mitral valve patch as outlined in the red square boxes in the top row.
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atrium, and the red square boxes outline the patch to crop. Bottom: Example of the cropped mitral valve patch as outlined in the red square boxes 
in the top row. 

 

Fig.9. The model training stage of the CUSSP method contains three steps: (i) the feature encoder is trained in the Barlow-Twins network with 
unlabeled imaging data set, (ii) the feature encoder is fine-tuned in a siamese network with labeled imaging data set, and (iii) the feature encoder 
is assembled with a MLP, then trained with labeled imaging data set for the classification task of MR. 
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Figure 10: The model training stage of the CUSSP method contains three steps: (i) the feature encoder is trained 
in the Barlow-Twins network with unlabeled imaging data set, (ii) the feature encoder is fine-tuned in a siamese 
network with labeled imaging data set, and (iii) the feature encoder is assembled with a MLP, then trained with 
labeled imaging data set for the classification task of MR.

4. Conclusion
The world’s first automated mitral regurgitation (MR) 
classification system is now available, a significant 
achievement in medical imaging. The CUSSP model, trained 
with limited supervision, has demonstrated exceptional 
performance in classifying 4CH Cardiac Magnetic Resonance 
(CMR) imaging sequences, paving the way for large-scale 
screening for MR. MR is a common cardiovascular condition 
where the mitral valve fails to close properly, allowing 
blood to flow backward into the heart. Early detection and 
diagnosis are crucial for effective treatment and improved 
patient outcomes. The automated CUSSP model has 
achieved remarkable results, with an F1 score of 0.69 and 
an ROC AUC of 0.88, indicating a high degree of accuracy in 
detecting MR, even with limited training data. The system’s 
ability to operate on 4CH CMR imaging sequences allows for 
a more comprehensive evaluation of the mitral valve and 
surrounding cardiac structures, enabling the detection of 

subtle changes and patterns that may indicate MR, leading to 
more accurate diagnoses. The system’s limited supervision 
training paradigm allows it to learn from limited labeled 
data, making it an attractive solution for applications where 
high-quality labeled data is scarce.
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